• Title/Summary/Keyword: Set-point temperature

Search Result 205, Processing Time 0.026 seconds

The Proposal of a Quantitative Evaluation Method on Mixing Loss in the HVAC System Design

  • Yee, Jurng-Jae;Kim, Young-Tae
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.9 no.2
    • /
    • pp.62-68
    • /
    • 2001
  • It is a serous subject for energy conservation to prevent the energy loss caused by the mixture of heated and cooled air jets in perimeter and interior zone of a building operated with tow kinds of air-conditioning system simultaneously. The purpose of this paper is to clarify the quantitative and qualitative mechanisms of mixing loss and to propose a evaluation method for it. By using the dynamic heat load calculation, heat extraction load of a typical office building in Busan are calculated. According to the results, numerical simulations based on CFD(Computational Fluid Dynamics) were performed in order to evaluate mixing loss in the physical size of HVAC system. Then, the distributions of air temperature and airflow patterns according to the differences of set-point temperature are analyzed to grasp relations how to influence mixing loss.

  • PDF

Effect on clothing color preference of seasonal variations in physiology and psychology (계절에 따른 생리와 심리의 변화가 의복색 선호에 미치는 영향)

  • Kim Sook-Hee;Lee Won-Ja
    • Journal of the Korea Fashion and Costume Design Association
    • /
    • v.7 no.3
    • /
    • pp.75-81
    • /
    • 2005
  • The experiment aimed at knowing the effect of physiology and psychology according to season on color preference. Two tests, one of the spring and the other of the autumn was conducted. Seventy subjects with normal color vision served as subjects. The subjects entered a bioclimatic chamber controlled at a temperature of $25\pm1^{\circ}C$, a relative humidity of $50\pm5\%$ and a light of 1000 1x. The subjects wearing white shirts and trousers sat quietly on a sofa for one our. Sensation from warm to cool colors might be possibly different individually Therefore, a subject asked to array 41 randomly placed cloth colors from very warm to very cool colors during rest quietly for one our. All subjects arrayed these cloth colors in the order from red through yellow and green to blue, which had the reproducibility. After rest, they were instructed to choose a single one out of 41 cloth colors, preferred by themselves, every 10min during one our 0-ring test were measured to red, yellow, white, blue, black, favorite color, and dislike color. Most subjects preferred warmer color in April than in December. Tympanic temperature was significantly lower in December than in April. Finger presser was significantly higher in like color than in dislike color but it was no significant differences between spring and autumn. The preferring the warm color in April toward summer when basal metabolic rate is decreased than in December toward winter when it is increased can explain that physiology reaction by load error between actual core temperature and set-point induces psychological reaction to pursue visual alliesthesia. Our present experiment revealed that the preferred color could be determined by the relationship between the internal temperature and its set point according to season. It should be emphasized that the alliesthesia was observed also in the realm of visual system.

  • PDF

The Experimental Study of the Heat Flux and Energy Consumption on Variable Flow Rate for Secondary Side of DHS (지역난방 2차측 유량변화가 내부 열유속 및 에너지소비량에 미치는 영향에 관한 실험적 연구)

  • Hong, Seong-Ki;Cho, Sung-Hwan
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.5
    • /
    • pp.247-253
    • /
    • 2015
  • The presented work demonstrates the effects of flow rate on the secondary side of DHS (District Heating System). Increasing flow rate at the secondary side of DHS decreases energy consumption and time to reach the set-point of the heated room while increasing heat flux on the floor in the heating space. When flow rate increases, the overall heat transfer rate of radiant floor also increases. However, the results also show overall heat transfer rateto not increased linearly and thus the existence of an optimal flow rate for the secondary side of DHS. Control of the radiant floor with hot water may be more effectively accomplished with a combined control strategy that includes heat flux and a temperature set-point. This experimental analysis has been performed using a lab-scaled DHS pilot plant located at Jeonju University in Korea.

A Study on the Optimal Control Strategy of Air-Conditioning System with Slab Thermal Storage - The Difference by the Presence of Radiant Heat as a Criterion Factor - (슬래브축열의 최적제어방책에 관한 연구 -평가요소로 복사열의 고려 유무에 의한 차이-)

  • Jung Jae-Hoon;Shin Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.4
    • /
    • pp.287-296
    • /
    • 2006
  • In this paper, optimal control strategy of the air-conditioning system with slab thermal storage was investigated based on the optimal control theory. An optimal heat output to the plenum chamber and the air-conditioned room was determined based on two kinds of criterion functions. The first one requires small deviation in room air temperature from a set-point value and low energy consumption. It is shown that the optimized control is to store heat through the whole storage time and to increase storage rate gradually with time. As the second case, a criterion that both a deviation of operative temperature from a set-point temperature and the energy consumption should be minimized was adopted. The room air temperature was a little high and the cooling load during storage time was reduced, compared with the results when a criterion function considering only the room air temperature is used.

Variation Analysis of CO2 Concentrations at Sunset before and after of Summer Season at the Foreshore (갯벌에서 여름철 일몰 전후 이산화탄소 농도 변동 분석)

  • Kang, Dong Hwan;Kwon, Byung Hyuk;Kim, Park Sa
    • Journal of Environmental Science International
    • /
    • v.23 no.3
    • /
    • pp.399-407
    • /
    • 2014
  • In this study, before and after sunset carbon dioxide concentration and air temperature were observed in two points of atmosphere (lower observation point of the GL + 0.1 m, the upper observation point of GL + 1.0 m) on the foreshore at located in Suncheon Bay and their variations were analyzed. Observation was performed on the foreshore on 2~4 August 2010. Instrument (VAISALA, GMP343) was set two hours before sunset and then observation was made continuously for six hours. In three days, observed carbon dioxide concentration was 375~419 ppm, and the air temperature was in the range of $28.7{\sim}32.5^{\circ}C$. The average concentration of carbon dioxide was 388~399 ppm in the upper observation point and 386~396 ppm in the lower observation point. It was higher in the upper observation point and its fluctuations were similar in two observation points. Correlation coefficients between carbon dioxide concentration and air temperature in the upper observation point were in the range of -0.64~-0.88, and were calculated -0.65 to -0.90 in the lower observation point. For the carbon dioxide concentration, correlation coefficients between the upper part and the lower part were very high as 0.98 in three times. For the air temperature, correlation coefficients between the upper part and the lower part were very high as 0.97 and 0.99. In the same observation time, the slope of the linear regression function as carbon dioxide concentration in the lower observation point for the upper observation point was in the range of 0.97~1.01. Carbon dioxide concentration was slightly higher in the upper observation point. Because carbon dioxide in the lower observation point was closer on the surface of the foreshore and absorbed from atmosphere to the foreshore. In this study, it was showed that the vertical variation of carbon dioxide concentration was insignificant in the several meter scale of atmosphere on the surface of the foreshore.

Control of Hot Spots in Plug Flow Reactors Using Constant-temperature Coolant (등온 냉각액을 활용한 plug flow reactor 내의 과열점 제어를 위한 제어모델 개발)

  • Rhyu, Jinwook;Kim, Yeonsoo;Lee, Jong Min
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.77-84
    • /
    • 2021
  • To control hot spot in a plug flow reactor (PFR) is important for the yield and purity of products and safety. In this paper, coolant temperature is set as a state variable, and radial distributions of heat and mass are considered to model the PFR more realistic than without considering radial distributions. The model consists of three state variables, reactant concentration, reactant temperature, and the coolant temperature. The flow rate of the isothermal coolant is a manipulated variable. This paper shows that the controller considering the radial distributions of heat and mass is more effective than the controller without them. Assuming that u3,0 is 0.7, the suggested control equation was robust when St is bigger than 1.3, and Ac/A is smaller than 2.0. Under this condition, the hot spot temperature changed within the relative error of one percent when the temperature of input altered within the range of five percent.

Convergence analysis of fixed-point iteration with Anderson Acceleration on a simplified neutronics/thermal-hydraulics system

  • Lee, Jaejin;Joo, Han Gyu
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.532-545
    • /
    • 2022
  • In-depth convergence analyses for neutronics/thermal-hydraulics (T/H) coupled calculations are performed to investigate the performance of nonlinear methods based on the Fixed-Point Iteration (FPI). A simplified neutronics-T/H coupled system consisting of a single fuel pin is derived to provide a testbed. The xenon equilibrium model is considered to investigate its impact during the nonlinear iteration. A problem set is organized to have a thousand different fuel temperature coefficients (FTC) and moderator temperature coefficients (MTC). The problem set is solved by the Jacobi and Gauss-Seidel (G-S) type FPI. The relaxation scheme and the Anderson acceleration are applied to improve the convergence rate of FPI. The performances of solution schemes are evaluated by comparing the number of iterations and the error reduction behavior. From those numerical investigations, it is demonstrated that the number of FPIs is increased as the feedback is stronger regardless of its sign. In addition, the Jacobi type FPIs generally shows a slower convergence rate than the G-S type FPI. It also turns out that the xenon equilibrium model can cause numerical instability for certain conditions. Lastly, it is figured out that the Anderson acceleration can effectively improve the convergence behaviors of FPI, compared to the conventional relaxation scheme.

Fuzzy Control Application Strategy for Energy Saving in HVAC System (공조시스템의 에너지절약을 위한 Fuzzy제어 적용방안 연구)

  • Ahn, Byung-Cheon;Song, Jae-Yeob
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.3 no.2
    • /
    • pp.31-37
    • /
    • 2007
  • The fuzzy control algorithm for HVAC system has been developed for minimizing energy consumption while maintaining the comfort of indoor thermal environment in terms of the environmental variables such as time varying indoor cooling load and outdoor temperatures. The optimal set-points of control parameters with fuzzy control are supply air temperature, chilled water temperature and condenser temperature. This study has been done by using TRNSYS program in order to analyze the HVAC system response. As a result, the fuzzy control algorithm with PID algorithm shows good energy performance in comparison with conventional one.

  • PDF

A Study on the Optimal Control Strategy of Air-Conditioning System with Slab Thermal Storage - Results Influenced by the Choice of a Criterion Function - (슬래브축열의 최적제어방책에 관한 연구 -평가함수의 선택이 결과에 미치는 영향-)

  • Jung, Jae-Hoon;Shin, Young-Gy
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.18 no.11
    • /
    • pp.896-905
    • /
    • 2006
  • An optimal control of an air-conditioning system with slab thermal storage is investigated by making use of the Maximum Principle. An optimal heat input to a plenum chamber and an air-conditioned room is determined by minimizing a criterion function which is given as integral sum of two terms. The first term is the square of the deviation in the room air temperature from the set-point value, and the second is the absolute value of the heat input. The result indicates that it tries to keep a room air temperature in set-point value by heating as much as possible at the time of a setup of a room air temperature or just before that, in order to avoid a heat loss arising at the time of the non-air conditioning. The result is compared with that of the case when the square of the heat input is used as a criterion.

Investigation of Structural Reliability on Solder Joint According to Heater Set-point of the Lunar Lander (달 착륙선의 히터 작동온도 설정에 따른 솔더 접합부의 구조적 신뢰성 분석)

  • Jeon, Young-Hyeon;Park, Tae-Yong;Lee, Jang-Joon;Kim, Jung-Hoon;Oh, Hyun-Ung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.2
    • /
    • pp.167-174
    • /
    • 2018
  • The heater is applied to the lunar lander for securing its survivability under severe lunar thermal environment during 14 days of night time. For this, the heater on/off set-points shall be determined to minimize the power consumption due to the limited power generation of lunar lander during night time. In addition, the temperature changes of the lander according to the heater set-point is also an important factor because it is related to thermo-mechanical reliability on solder joint of on-board electronics. In this study, we investigated thermo-mechanical reliability on solder joint according to the heater set-point by using commercial reliability and a life prediction tool of Sherlock based on the thermal analysis results of lunar lander that is a year of the mission lifetime.