• Title/Summary/Keyword: Set-point temperature

Search Result 207, Processing Time 0.039 seconds

Evaluation of Installation Length of CWR Considering Rail Tenser's Capacity And Track Maintenance (레일긴장기의 성능을 고려한 효율적인 장대레일 설정방법)

  • Park, Ok-Jeong;Kim, Eung-Rok
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.72-79
    • /
    • 2010
  • The significant of continuous welded rail (CWR) management is growing because KORAIL has the plan to convert the whole of conventional railway lines into CWRs through continuous activities since constructed the CWR track with 1.8km in Gyeongbu line in 1966. The CWR recently is needed a efficient management method because it is difficult to manage the CWR by the poor of technic and equipment, limited maintain labor force and shorted the maintain work time of CWR caused by industrialization, greenhouse effect and global warming In this point, The 70ton Tenser's which is using in the rail site has been analysised with no extra tenser's capacity in case of the under low temperature and exceed the length of 1km as a result of reviewing the CWR-related rules and standards, a series of records of safety accidents, operation obstacles, and the situation of broken rails published by KORAIL, existing rail temperature measurements, and CWR researches. Therefore avoid the excessive plan of the first set-up section, choice the proper time in the normal temperature that is possible to weld the rail, turning the difference of rail temperature and Installation temperature down is desirable.

  • PDF

Ventilation at Supra-Optimal Temperature Leading High Relative Humidity Controls Powdery Mildew, Silverleaf Whitefly, Mite and Inhibits the Flowering of Korean Melon in a Greenhouse Cultivation (참외 시설 재배 시 고온에서의 환기 처리에 의한 상대습도 상승과 흰가루병, 담배가루이, 응애 방제 및 개화 억제)

  • Seo, Tae Cheol;Kim, Jin Hyun;Kim, Seung Yu;Cho, Myeong Whan;Choi, Man Kwon;Ryu, Hee Ryong;Shin, Hyun Ho;Lee, Choung Keun
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.43-51
    • /
    • 2022
  • This study was conducted to investigate the effect of ventilation at high temperature on the control of powdery mildew, silverleaf whitefly two-spotted spider mite occurred at Korean melon cultivation greenhouse, and on leaf rolling and flowering of the plant in summer season. 'Alchanggul' grafted onto 'Hidden Power' rootstock was planted on soil bed with the distance of 40 cm. Three ventilation temperatures of 45℃, 40℃, and 35℃ as set points were compared. Ventilation treatment was done by control of side window operation from 18th June to 13th July when silverleaf whitefly, mite, and powdery mildew were occurred in all greenhouses. The temperature inside greenhouse was increased up to the set temperature point on sunny days and maintained for about 9 hours with high relative humidity at 45℃ condition. The differences of day maximum air temperature and day minimum RH were the highest at 45℃ treatment. After 11 days of treatments, the damage by powdery mildew and two-spotted spider mite was almost recovered at 45℃ treatment but not at 40 and 35℃. The population of silverleaf whitefly and two-spotted spider mite were significantly decreased at 45℃ treatment at 14 days after treatment, while powdery mildew symptom was not significantly decreased. Leaf rolling was observed at high temperature but not severe at 45℃ treatment. After 26 days of treatments, female flowers did not bloom at all at 45℃ treatment, and the number of male flowers was 1.2 among 15 nodes of newly grown shoots. As the result, it indicates that ventilation at the high temperature of 45℃ for about 2 to 3 weeks can be an applicable method to control above mentioned pests and disease, and to recover the vegetative growth of Korean melon by reducing flowering of the plant.

Performance analysis of an organic Rankine cycle for ocean thermal energy conversion system according to the working fluid and the cycle (작동유체 및 사이클에 따른 해양온도차발전용 유기랭킨사이클의 성능분석)

  • Kim, Jun-Seong;Kim, Do-Yeop;Kim, You-Taek;Kang, Ho-Keun
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.39 no.9
    • /
    • pp.881-889
    • /
    • 2015
  • Ocean thermal energy conversion is an organic Rankine cycle that generates power using the temperature difference between surface water and deep water. This study analyzes the thermodynamic efficiency of the cycle, which strongly depends on the working fluid and the cycle configuration. Cycles studied included the classical simple Rankine cycle, Rankine cycles with an open feedwater heater and an integrated regenerator, as well as the Kalina cycle. Nine kinds of simple refrigerants and three kinds of mixed refrigerants were investigated as the working fluids in this study. Pinch-point analysis that set a constant pinch-point temperature difference was applied in the performance analysis of the cycle. Results showed that thermodynamic efficiency was best when RE245fa2 was used as the working fluid with the simple Rankine cycle, the Rankine cycles with an open feedwater heater and an integrated regenerator, and when the mixing ratio of $NH_3/H_2O$ was 0.9:0.1 in the Kalina cycle. If the Rankine cycles with an open feedwater heater, an integrated regenerator, and the Kalina cycle were used for ocean thermal energy conversion, efficiency increases could be expected to be approximately 2.0%, 1.0%, and 10.0%, respectively, compared to the simple Rankine cycle.

Optimization and characterization of biodiesel produced from vegetable oil

  • Mustapha, Amina T.;Abdulkareem, Saka A.;Jimoh, Abdulfatai;Agbajelola, David O.;Okafor, Joseph O.
    • Advances in Energy Research
    • /
    • v.1 no.2
    • /
    • pp.147-163
    • /
    • 2013
  • The world faces several issues of energy crisis and environmental deterioration due to over-dependence on single source of which is fossil fuel. Though, fuel is needed as ingredients for industrial development and growth of any country, however the fossil fuel which is a major source of energy for this purpose has always been terrifying thus the need for alternative and renewable energy sources. The search for alternative energy sources resulted into the acceptance of a biofuel as a reliable alternative energy source. This work presents the study of optimization of process of transesterification of vegetable oil to biodiesel using NaOH as catalyst. A $2^4$ factorial design method was employed to investigate the influence of ratio of oil to methanol, temperature, NaOH concentration, and transesterification time on the yield of biodiesel from vegetable oil. Low and high levels of the key factors considered were 4:1 and 6:1 mole ratio, 30 and $60^{\circ}C$ temperatures, 0.5 and 1.0 wt% catalyst concentration, and 30 and 60 min reaction time. Results obtained revealed that oil to methanol molar ratio of 6:1, tranesetrification temperature of $60^{\circ}C$, catalyst concentration of 1.0wt % and reaction time of 30 min are the best operating conditions for the optimum yield of biofuel from vegetable oil, with optimum yield of 95.8%. Results obtained on the characterizzation of the produced biodiesel indicate that the specific gravity, cloud point, flash point, sulphur content, viscosity, diesel index, centane number, acid value, free glycerine, total glycerine and total recovery are 0.8899, 4, 13, 0.0087%, 4.83, 25, 54.6. 0.228mgKOH/g, 0.018, 0.23% and 96% respectively. Results also indicate that the qualities of the biodiesel tested for are in conformity with the set standard. A model equation was developed based on the results obtained using a statistical tool. Analysis of variance (ANOVA) of data shows that mole ratio of ground nut oil to methanol and transesterification time have the most pronounced effect on the biodiesel yield with contributions of 55.06% and 9.22% respectively. It can be inferred from the results various conducted that vegetable oil locally produced from groundnut oil can be utilized as a feedstock for biodiesel production.

Effectiveness of Dispersants for Very-Low-Sulfur Fuel Oil (저유황유(VLSFO)의 유처리제 효용성 연구)

  • Kim, Deuksan;Seo, Jeong Mog;Ahn, Suhyun;Lee, Heejin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.1
    • /
    • pp.113-118
    • /
    • 2021
  • The International Maritime Organization (IMO) has confirmed a global limit of 0.5 % for sulfur in fuel oil used on board ships with effect from January 1, 2020. Among various alternatives to respond to these regulations on sulfur content in fuel oil, such as LNG ships, SOx scrubbers, and very-low-sulfur fuel oil (VLSFO). VLSFO is preferred owing to its low investment costs. As more ships are expected to use VLSFO, VLSFO spills are expected to increase. In particular, when the seawater temperature is below the pour point of VLSFO, VLSFO solidifies when it is spilled, which makes controlling spills difficult. In this study, six types of VLSFO produced in Korea and one type of high-sulfur fuel oil (MF380) were compared in terms of the dispersibility of dispersants according to the seawater temperature conditions. The results confirmed that the six type of VLSFO did not satisfy the domestic standards for dispersant rate (60 % or more for 0.5 min, 20 % or more for 10 min). Morever, the dispersant rate of the six types of VLSFO was low compared with that of the high-sulfur fuel oil. The results of this study are expected to be used to set the direction of dispersant control in the case of VLSFO spills.

CFD-based Fire Accident Impact Analysis in Clean Room for semiconductor PR Process (반도체 PR 공정의 클린룸내 CFD 기반 화재 사고 영향 분석)

  • Chun, Kwang-Su;Yi, Jinseok;Park, Myeongnam
    • Journal of the Korean Institute of Gas
    • /
    • v.25 no.6
    • /
    • pp.35-44
    • /
    • 2021
  • The PR (Photo Resist) process in the semiconductor process is a process that uses a mixture of flammable substances. Due to the process equipment is installed in a clean room and when flammable substances leak, there is a high risk of suffocation, fire, and explosion. It is necessary to analyze the impact of accidents that may occur during operation and to evaluate whether the safety of workers can be guaranteed. In this study, the value of radiant heat and temperature change at the monitor point set up virtual inside the clean room was confirmed through CFD simulation of 10 leak and fire scenarios using the FLACS CFD - Fire Module. A fire that occurs inside a clean room transfers high radiant heat to the inter-story structure, but its scope is quite limited, and it is unlikely that it will collapse in a single fire accident. There was no scenario in which two stairs leading to the exit were exposed to high radiant heat at the same time due to a fire accident, therefore workers were able to escape in case of a fire. In addition, it was confirmed that the level of radiant heat and temperature rise rapidly decreased as they moved downstairs. According to the API 520 standard, workers exposed to 6.31 kW/m2 of radiant heat that workers can withstand for 30 seconds were confirmed that it was possible to sufficiently escape from the inside.

Root zone environments in two cropping system within a year for Kyoho grapes (포도 '거봉'의 2기작 재배에서 근권환경 특성)

  • 오성도;김용현
    • Journal of Bio-Environment Control
    • /
    • v.6 no.4
    • /
    • pp.235-241
    • /
    • 1997
  • This study was performed to investigate the behaviour of root zone environments under the control of soil temperature and tension of soil moisture near the root Bone of 'Kyoho' grapes tree grown on restricted root zone system in plastic greenhouse. Maximum diurnal air temperature inside plastic greenhouse ranged between 25.1 and 32.7$^{\circ}C$, and the average of nocturnal air temperature inside plastic greenhouse maintained at 18$^{\circ}C$ in winter season. Also the minimum diurnal relative humidity ranged between 50 and 55%, and the maximum nocturnal relative humidity ranged between 84 to 87%. At a depth of 15cm from soil surface, the average soil temperature maintained at 25.6$^{\circ}C$ for under-ground heating, and appeared to 17.4$^{\circ}C$ for unheated condition. Although the tension of soil moisture just after irrigation sharply decreased to pF 1.5, the tension of soil moisture at the depth of 15cm maintained at pF 2.0~2.2. It is suggested that the tension of soil moisture at the depth of 15cm might be used as the standard for the determination of irrigation set point. Effective drainage system is needed to prevent the spindly and succulent growth of vine trees grown in restricted root zone system.

  • PDF

The Effect on the Forest Temperature by Reduced Biomass Caused by Natural Forest Thinning (천연림 간벌에 기인한 산림생물량 감소가 산림 내부 온도에 미치는 영향 연구)

  • Kang, Rae-Yeol;Hong, Suk-Hwan
    • Korean Journal of Environment and Ecology
    • /
    • v.32 no.3
    • /
    • pp.303-312
    • /
    • 2018
  • This study was conducted to investigate the relationship between the decrease of forest biomass by forest thinning and the change of temperature in the natural forest by measuring forest biomass and temperature before and after forest thinning in the Pusan National University forest where afforestation had been carried out. We intended to investigate the relationship between the forest biomass, estimated by calculating the Basal area, Crown area and Crown volume using the same formula to the same quadrat before and after forest thinning, and the forest temperature. Temperature measurement was carried out on April 20, 2016 through 28 before forest thinning, July 26, 2016 through November 4 around the time of forest thinning, and April 15, 2017 through May 8 after forest thinning. A temperature data logger was installed to point north at the height of 2.0 m above the ground in the center of the quadrat to record data every 10 minutes during the measurement periods. We used the AWS (Automatic Weather Station) data of the Dongnae-gu area located in the nearby city because it was difficult to set the control group since the whole forest was the subject to the forest thinning. The analysis of the relationship between forest biomass change and temperature showed that the change in temperature inside the forest was the greatest in the midday (12:00 - 15: 00) and was highly correlated with the Crown volume in the forest biomass. The temperature increase was much larger (average $1.91^{\circ}C$) 1 year after forest thinning than immediately after forest thinning (average $0.74^{\circ}C$). The comparison of the decrease rate of Crown volume and the increase in temperature showed that the Pitch pine community, which showed the highest decrease of Crown volume by 15.4%, recorded the highest temperature rise of $1.06^{\circ}C$ immediately after forest thinning and $2.49^{\circ}C$ 1 year after forest thinning. The Pitch pine-Korean red pine community, which showed the lowest Crown volume reduction rates with 5.0%, recorded no significant difference immediately after forest thinning but a temperature rise of $0.92^{\circ}C$ 1 year after forest thinning. The results confirmed that the decrease of forest biomass caused by forest thinning led to a rapid increase of the internal temperature. The fact that the temperature increase was more severe after 1 year than immediately after forest thinning confirmed that the microclimate changes due to the removed biomass cannot be recovered in a short time.

Hazard Analysis, Determination of Critical Control Points, and Establishment of Critical Limits for Seasoned Laver (조미김의 제조공정별 위해요소분석, 중요관리점 결정 및 한계기준 개발)

  • Kang, Min Jeong;Lee, Hak Tae;Kim, Jung Yun
    • Culinary science and hospitality research
    • /
    • v.21 no.2
    • /
    • pp.1-10
    • /
    • 2015
  • The purpose of this study was to establish the critical limit of CCP (Critical Control Point) of a HACCP (Hazard Analysis Critical Control Point) system used in the production of seasoned laver products. The hazard analysis examined microbial evaluations and developed a HACCP management plan for the heating process. The results were determined to be capable of reducing the biological element of CCP via the secondary roasting process. This study examined general bacteria and pathogenic microorganisms such as Escherichia coli, Staphylococcus aureus, Salmonella spp., Listeria monocytogenes, Vibrio parahaemolyticus, and Bacillus cereus at temperatures ranging from $170^{\circ}C$ to $230^{\circ}C$ and for 3.0 to 5.5 seconds at a time. Before the secondary roasting process, pathogenic microorganisms were all negative, although the presence of general bacteria was still detected. General bacteria was reduced to $1.0{\times}10CFU/g$ after the temperature was set at $230^{\circ}C$ for a period of 5.5 seconds. In conclusion, it suggested that a HACCP plan was necessary for management standard and systematic approach in the establishment of critical limit, problem resolution, verification method, education, and records management through a secondary roasting process.

Development of Control Algorithm for Greenhouse Cooling Using Two-fluid Fogging System (이류체 포그 냉방시스템의 제어알고리즘 개발)

  • Nam, Sang-Woon;Kim, Young-Shik;Sung, In-Mo
    • Journal of Bio-Environment Control
    • /
    • v.22 no.2
    • /
    • pp.138-145
    • /
    • 2013
  • In order to develop the efficient control algorithm of the two-fluid fogging system, cooling experiments for the many different types of fogging cycles were conducted in tomato greenhouses. It showed that the cooling effect was 1.2 to $4.0^{\circ}C$ and the cooling efficiency was 8.2 to 32.9% on average. The cooling efficiency with fogging interval was highest in the case of the fogging cycle of 90 seconds. The cooling efficiency showed a tendency to increase as the fogging time increased and the stopping time decreased. As the spray rate of fog in the two-fluid fogging system increased, there was a tendency for the cooling efficiency to improve. However, as the inside air approaches its saturation level, even though the spray rate of fog increases, it does not lead to further evaporation. Thus, it can be inferred that increasing the spray rate of fog before the inside air reaches the saturation level could make higher the cooling efficiency. As cooling efficiency increases, the saturation deficit of inside air decreased and the difference between absolute humidity of inside and outside air increased. The more fog evaporated, the difference between absolute humidity of inside and outside air tended to increase and as the result, the discharge of vapor due to ventilation occurs more easily, which again lead to an increase in the evaporation rate and ultimately increase in the cooling efficiency. Regression analysis result on the saturation deficit of inside air showed that the fogging time needed to change of saturation deficit of $10g{\cdot}kg^{-1}$ was 120 seconds and stopping time was 60 seconds. But in order to decrease the amplitude of temperature and to increase the cooling efficiency, the fluctuation range of saturation deficit was set to $5g{\cdot}kg^{-1}$ and we decided that the fogging-stopping time of 60-30 seconds was more appropriate. Control types of two-fluid fogging systems were classified as computer control or simple control, and their control algorithms were derived. We recommend that if the two-fluid fogging system is controlled by manipulating only the set point of temperature, humidity, and on-off time, it would be best to set up the on-off time at 60-30 seconds in time control, the lower limit of air temperature at 30 to $32^{\circ}C$ and the upper limit of relative humidity at 85 to 90%.