• Title/Summary/Keyword: Set net

Search Result 835, Processing Time 0.029 seconds

Development of a Gridded Simulation Support System for Rice Growth Based on the ORYZA2000 Model (ORYZA2000 모델에 기반한 격자형 벼 생육 모의 지원 시스템 개발)

  • Hyun, Shinwoo;Yoo, Byoung Hyun;Park, Jinyu;Kim, Kwang Soo
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.19 no.4
    • /
    • pp.270-279
    • /
    • 2017
  • Regional assessment of crop productivity using a gridded simulation approach could aid policy making and crop management. Still, little effort has been made to develop the systems that allows gridded simulations of crop growth using ORYZA 2000 model, which has been used for predicting rice yield in Korea. The objectives of this study were to develop a series of data processing modules for creating input data files, running the crop model, and aggregating output files in a region of interest using gridded data files. These modules were implemented using C++ and R to make the best use of the features provided by these programming languages. In a case study, 13000 input files in a plain text format were prepared using daily gridded weather data that had spatial resolution of 1km and 12.5 km for the period of 2001-2010. Using the text files as inputs to ORYZA2000 model, crop yield simulations were performed for each grid cell using a scenario of crop management practices. After output files were created for grid cells that represent a paddy rice field in South Korea, each output file was aggregated into an output file in the netCDF format. It was found that the spatial pattern of crop yield was relatively similar to actual distribution of yields in Korea, although there were biases of crop yield depending on regions. It seemed that those differences resulted from uncertainties incurred in input data, e.g., transplanting date, cultivar in an area, as well as weather data. Our results indicated that a set of tools developed in this study would be useful for gridded simulation of different crop models. In the further study, it would be worthwhile to take into account compatibility to a modeling interface library for integrated simulation of an agricultural ecosystem.

Synthetic Training Data Generation for Fault Detection Based on Deep Learning (딥러닝 기반 탄성파 단층 해석을 위한 합성 학습 자료 생성)

  • Choi, Woochang;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.89-97
    • /
    • 2021
  • Fault detection in seismic data is well suited to the application of machine learning algorithms. Accordingly, various machine learning techniques are being developed. In recent studies, machine learning models, which utilize synthetic data, are the particular focus when training with deep learning. The use of synthetic training data has many advantages; Securing massive data for training becomes easy and generating exact fault labels is possible with the help of synthetic training data. To interpret real data with the model trained by synthetic data, the synthetic data used for training should be geologically realistic. In this study, we introduce a method to generate realistic synthetic seismic data. Initially, reflectivity models are generated to include realistic fault structures, and then, a one-way wave equation is applied to efficiently generate seismic stack sections. Next, a migration algorithm is used to remove diffraction artifacts and random noise is added to mimic actual field data. A convolutional neural network model based on the U-Net structure is used to verify the generated synthetic data set. From the results of the experiment, we confirm that realistic synthetic data effectively creates a deep learning model that can be applied to field data.

Case Study on ESG Activities and Performance in Response to the Climate Change Crisis (기후변화 위기에 대응하는 건설기업 ESG 활동 및 성과 사례)

  • Lee, Yoonsun;Moon, Hyuk;Lee, Tai Sik
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.2
    • /
    • pp.106-118
    • /
    • 2021
  • Global governments and initiatives have attempted and integrated various organizational efforts to implement the 17 Sustainable Development Goals (SDGs), presenting a new paradigm of sustainable development to address global issues (climate change, poverty eradication, and human rights). Recently, investment in sustainable finance has expanded to finance the attainment of goals set out in the Paris Agreement and SDGs. Non-financial factors such as environment, social responsibility, and governance (ESG) have become intangible assets that determine the future competitiveness and profitability of companies. Domestic and foreign institutional investors and asset management companies have been expanding their investments based on the ESG performance of companies. In this study, we aim to derive international standards and initiatives that require disclosure of information on corporate social responsibility activities and ESG performance and analyze construction companies' ESG activities and performance levels. The results of this study can be used as the basis to develop platforms for the construction industry ESG ecosystem and the measurement and management of intangible assets. These could ultimately contribute to overcoming the crisis in the future due to the outbreak of the COVID-19 pandemic, fostering net-zero emissions, and preventing fatal workplace accidents in the construction industry.

A Study on the Characteristics of Skin Beauty Franchise System -Focusing on the comparison of cases between Korea and the United States- (피부미용 프랜차이즈 시스템의 특성 분석 연구 -한국과 미국의 사례 비교를 중심으로-)

  • Kim, Hyeon-Suk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.22 no.3
    • /
    • pp.688-696
    • /
    • 2021
  • This study compared the current status, opening costs, and service of skin beauty franchises in Korea and the U.S. with the aim of providing data for skin beauty franchises. The main items in both countries include facial and body care, with 54 mean value in Korea, which is smaller than 361 mean value in the U.S. The U.S. franchise fee is about 1.5 times higher than that in Korea, and franchisees pay royalties of 20-60(ten thousand KRW) per month in Korea and 5-6 percent of annual sales in the U.S., as well as submit a net worth requirement and cash requirement. There are many spa services in the U.S. which creates differences in cost from Korea. and for the education, the cost was set in Korea while the time in the U.S. Every franchise offered facial and body care services. In addition, most Korean franchises run bridal care services, while in the U.S., waxing, men's treatment, hot stone, and spa services are offered. These differences are the result of differences in climate and race between the two countries, as well as differences in perception regarding the socio-cultural atmosphere, skin beauty, and openness.

Selection and Application of Pollinating Insects to Improve Seed Production of Buckwheat in Net House (메밀의 망실재배시 종자생산성 향상을 위한 수분곤충의 선발과 활용법 구명)

  • Kim, Su Jeong;Sohn, Hwang Bae;Nam, Jeong Hwan;Lee, Jong Nam;Suh, Jong Taek;Chang, Dong Chil;Kim, Yul Ho
    • Korean Journal of Plant Resources
    • /
    • v.35 no.1
    • /
    • pp.10-22
    • /
    • 2022
  • This study investigated field data to understand the spatio-temporal distribution of pollinating insects and buckwheat flowers. We set the in-situ observation sites in different locations to get altitude and cropping system distribution data for five years (2016 to 2020) in Korea. Twenty-five different insect species, belonging to 8 orders, were recorded. Over the past five years, species from the orders Diptera and Hymenoptera were the principal visitors. Hymenoptera was mainly represented by honey bees (Apis cerana), while Diptera was represented by bean seed fly (Delia platura) and several other species. Some bees and other Hymenoptera species could, however, act as co-pollinators because of their high relative frequency and activity. Compared with open-field cultivation (conventional), the pollination mediating effect of flies and bees was superior in net house, so the yield was high, and it was also found to be slightly higher in the mixed treatment of flies and bees than in the single treatment. Based on the above results, flies and bees were found to be the most active pollinating insects in buckwheat and it is necessary to actively utilize the selected insects to improve buckwheat productivity. This relationship will be utilized in establishing the system of seed production on pollinating regulation of a primary plant.

A Study on the Research Trends of Archival Preservation Papers in Korea from 2000 to 2021 (국내 기록보존 연구동향 분석: 2000~2021년 학술논문을 중심으로)

  • Yonwhee, Na;Heejin, Park
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.22 no.4
    • /
    • pp.175-196
    • /
    • 2022
  • This study aims to determine the research trends in archival preservation through keyword analysis, understand the current research status, and identify the research topics' changes over time. The degree and betweenness centrality analyses were conducted and visualized on 463 "archival preservation studies" articles published from 2000 to 2021 in various academic journals, using NetMiner 4.0. The collected research papers were divided into three time periods according to when they were published: the first period (2000-2007), the second period (2008-2014), and the third period (2015-2021). The subject keywords for the research papers on archival preservation in Korea that have influence and expandability are as follows. Across all periods, these were "electronic records" and "long-term preservation." In addition, if taken separately per period, the "OAIS reference model" and "electronic records" dominated the first and second periods, respectively, while the "records management standard table" and "long-term preservation" both dominated the third period. A conceptual framework and theory-oriented study for archival preservation, such as "digital preservation," "digitalization," and the "OAIS reference model," dominated the first period. During the second period, more research focused on procedures and practical applications related to conservation activities, such as "electronic record," "appraisal," and "DRAMBORA." In contrast, the majority of the research in the third period was on technical implementation according to the changes in the records management environment, such as "data set," "administrative information system," and "social media."

A 2×2 MIMO Spatial Multiplexing 5G Signal Reception in a 500 km/h High-Speed Vehicle using an Augmented Channel Matrix Generated by a Delay and Doppler Profiler

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.10
    • /
    • pp.1-10
    • /
    • 2023
  • This paper proposes a method to extend Inter-Carrier Interference (ICI) canceling Orthogonal Frequency Division Multiplexing (OFDM) receivers for 5G mobile systems to spatial multiplexing 2×2 MIMO (Multiple Input Multiple Output) systems to support high-speed ground transportation services by linear motor cars traveling at 500 km/h. In Japan, linear-motor high-speed ground transportation service is scheduled to begin in 2027. To expand the coverage area of base stations, 5G mobile systems in high-speed moving trains will have multiple base station antennas transmitting the same downlink (DL) signal, forming an expanded cell size along the train rails. 5G terminals in a fast-moving train can cause the forward and backward antenna signals to be Doppler-shifted in opposite directions, so the receiver in the train may have trouble estimating the exact channel transfer function (CTF) for demodulation. A receiver in such high-speed train sees the transmission channel which is composed of multiple Doppler-shifted propagation paths. Then, a loss of sub-carrier orthogonality due to Doppler-spread channels causes ICI. The ICI Canceller is realized by the following three steps. First, using the Demodulation Reference Symbol (DMRS) pilot signals, it analyzes three parameters such as attenuation, relative delay, and Doppler-shift of each multi-path component. Secondly, based on the sets of three parameters, Channel Transfer Function (CTF) of sender sub-carrier number n to receiver sub-carrier number l is generated. In case of n≠l, the CTF corresponds to ICI factor. Thirdly, since ICI factor is obtained, by applying ICI reverse operation by Multi-Tap Equalizer, ICI canceling can be realized. ICI canceling performance has been simulated assuming severe channel condition such as 500 km/h, 8 path reverse Doppler Shift for QPSK, 16QAM, 64QAM and 256QAM modulations. In particular, 2×2MIMO QPSK and 16QAM modulation schemes, BER (Bit Error Rate) improvement was observed when the number of taps in the multi-tap equalizer was set to 31 or more taps, at a moving speed of 500 km/h and in an 8-pass reverse doppler shift environment.

Determining Food Nutrition Information Preference Through Big Data Log Analysis (빅데이터 로그분석을 통한 식품영양정보 선호도 분석)

  • Hana Song;Hae-Jeung, Lee;Hunjoo Lee
    • Journal of Food Hygiene and Safety
    • /
    • v.38 no.5
    • /
    • pp.402-408
    • /
    • 2023
  • Consumer interest in food nutrition continues to grow; however, research on consumer preferences related to nutrition remains limited. In this study, big data analysis was conducted using keyword logs collected from the national information service, the Korean Food Composition Database (K-FCDB), to determine consumer preferences for foods of nutritional interest. The data collection period was set from January 2020 to December 2022, covering a total of 2,243,168 food name keywords searched by K-FCDB users. Food names were processed by merging them into representative food names. The search frequency of food names was analyzed for the entire period and by season using R. In the frequency analysis for the entire period, steamed rice, chicken, and egg were found to be the most frequently consumed foods by Koreans. Seasonal preference analysis revealed that in the spring and summer, foods without broth and cold dishes were consumed frequently, whereas in fall and winter, foods with broth and warm dishes were more popular. Additionally, foods sold by restaurants as seasonal items, such as Naengmyeon and Kongguksu, also exhibited seasonal variations in frequency. These results provide insights into consumer interest patterns in the nutritional information of commonly consumed foods and are expected to serve as fundamental data for formulating seasonal marketing strategies in the restaurant industry, given their indirect relevance to consumer trends.

Influencing Factors on the Likelihood of Start-up Success of Researchers in Public Research Institutes: Using PLS and fsQCA (공공연구기관 연구자의 창업성공가능성에 미치는 영향 요인: PLS와 fsQCA 활용)

  • Hwang, Kyung Yun;Sung, Eul Hyun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.17 no.1
    • /
    • pp.107-120
    • /
    • 2022
  • The purpose of this study is to analyze the net effect and the combined effect of the determinants of the likelihood of start-up success of researchers at public research institutes. Based on the existing literature, the determinants of the researcher's likelihood of start-up success were reviewed, and a conceptual relationship between the determinants of the likelihood of start-up success was established. Data collection was conducted through a survey targeting researchers at public research institutes, and a total of 114 data were collected. The partial least squares (PLS) analysis method was used to analyze the net effect of the likelihood of start-up success determinant, and the fuzzy-set qualitative comparative analysis (fsQCA) was used to analyze the combined effect of the likelihood of start-up success determinant. In the PLS analysis results, it was found that technology commercialization probability and creative self-efficacy had a significant positive effect independently on the likelihood of start-up success. In the fsQCA results, we found a combined effect of increasing the likelihood of start-up success when the technology commercialization probability, technology commercialization capability, and creative self-efficacy were high. These research results provide academic implications for understanding the determinants of the likelihood of start-up success of researchers in public research institutes.

Automated Detection and Segmentation of Bone Metastases on Spine MRI Using U-Net: A Multicenter Study

  • Dong Hyun Kim;Jiwoon Seo;Ji Hyun Lee;Eun-Tae Jeon;DongYoung Jeong;Hee Dong Chae;Eugene Lee;Ji Hee Kang;Yoon-Hee Choi;Hyo Jin Kim;Jee Won Chai
    • Korean Journal of Radiology
    • /
    • v.25 no.4
    • /
    • pp.363-373
    • /
    • 2024
  • Objective: To develop and evaluate a deep learning model for automated segmentation and detection of bone metastasis on spinal MRI. Materials and Methods: We included whole spine MRI scans of adult patients with bone metastasis: 662 MRI series from 302 patients (63.5 ± 11.5 years; male:female, 151:151) from three study centers obtained between January 2015 and August 2021 for training and internal testing (random split into 536 and 126 series, respectively) and 49 MRI series from 20 patients (65.9 ± 11.5 years; male:female, 11:9) from another center obtained between January 2018 and August 2020 for external testing. Three sagittal MRI sequences, including non-contrast T1-weighted image (T1), contrast-enhanced T1-weighted Dixon fat-only image (FO), and contrast-enhanced fat-suppressed T1-weighted image (CE), were used. Seven models trained using the 2D and 3D U-Nets were developed with different combinations (T1, FO, CE, T1 + FO, T1 + CE, FO + CE, and T1 + FO + CE). The segmentation performance was evaluated using Dice coefficient, pixel-wise recall, and pixel-wise precision. The detection performance was analyzed using per-lesion sensitivity and a free-response receiver operating characteristic curve. The performance of the model was compared with that of five radiologists using the external test set. Results: The 2D U-Net T1 + CE model exhibited superior segmentation performance in the external test compared to the other models, with a Dice coefficient of 0.699 and pixel-wise recall of 0.653. The T1 + CE model achieved per-lesion sensitivities of 0.828 (497/600) and 0.857 (150/175) for metastases in the internal and external tests, respectively. The radiologists demonstrated a mean per-lesion sensitivity of 0.746 and a mean per-lesion positive predictive value of 0.701 in the external test. Conclusion: The deep learning models proposed for automated segmentation and detection of bone metastases on spinal MRI demonstrated high diagnostic performance.