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INTRODUCTION

Bone is one of the most common metastatic sites 
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Objective: To develop and evaluate a deep learning model for automated segmentation and detection of bone metastasis 
on spinal MRI.
Materials and Methods: We included whole spine MRI scans of adult patients with bone metastasis: 662 MRI series from 
302 patients (63.5 ± 11.5 years; male:female, 151:151) from three study centers obtained between January 2015 and 
August 2021 for training and internal testing (random split into 536 and 126 series, respectively) and 49 MRI series from 
20 patients (65.9 ± 11.5 years; male:female, 11:9) from another center obtained between January 2018 and August 2020 
for external testing. Three sagittal MRI sequences, including non-contrast T1-weighted image (T1), contrast-enhanced T1-
weighted Dixon fat-only image (FO), and contrast-enhanced fat-suppressed T1-weighted image (CE), were used. Seven 
models trained using the 2D and 3D U-Nets were developed with different combinations (T1, FO, CE, T1 + FO, T1 + CE, FO + 
CE, and T1 + FO + CE). The segmentation performance was evaluated using Dice coefficient, pixel-wise recall, and pixel-wise 
precision. The detection performance was analyzed using per-lesion sensitivity and a free-response receiver operating 
characteristic curve. The performance of the model was compared with that of five radiologists using the external test set.
Results: The 2D U-Net T1 + CE model exhibited superior segmentation performance in the external test compared to the other 
models, with a Dice coefficient of 0.699 and pixel-wise recall of 0.653. The T1 + CE model achieved per-lesion sensitivities of 
0.828 (497/600) and 0.857 (150/175) for metastases in the internal and external tests, respectively. The radiologists 
demonstrated a mean per-lesion sensitivity of 0.746 and a mean per-lesion positive predictive value of 0.701 in the 
external test.
Conclusion: The deep learning models proposed for automated segmentation and detection of bone metastases on spinal 
MRI demonstrated high diagnostic performance.
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for cancer, and bone metastases are a major cause of 
morbidity in patients with advanced-stage malignancies 
[1]. Comorbidities in spinal metastases, such as pathologic 
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or red marrow reconversion, which present an intricate 
background texture for input data, 2) innumerable bone 
metastases, 3) no bone metastasis, 4) suboptimal image 
quality, and 5) no reference imaging for the confirmative 
diagnosis of metastases were excluded from the study.

Another set of whole-spine MRIs were collected from 
another center (Center 4) for external testing. The images 
were obtained between January 2018 and August 2020. The 
inclusion and exclusion criteria were same as those used for 
the data for model development.

MRI Acquisition and Archiving
MRI acquisition followed the standard protocol at each 

study center, employing scanners from GE (GE Healthcare, 
Waukesha, WI, USA), Philips (Phillips Healthcare, 
Amsterdam, Netherlands), and Siemens (Siemens 
Healthineers, Erlangen, Germany), featuring both 1.5T and 
3T platforms (Supplementary Tables 1, 2). 

Non-contrast T1-weighted (T1), contrast-enhanced T1-
weighted Dixon fat-only (FO), and contrast-enhanced fat-
suppressed T1-weighted (CE) series were extracted from the 
Digital Imaging and Communications in Medicine files. The 
thickness of the image acquisition ranged from 3 mm (341 
series) to 4 mm (322 series), following the standard protocol 
of each hospital. The MRI standard protocols varied among 
the study centers, leading to differences in the composition 
of the imaging sequences used for training and testing. CE 
images can be obtained using conventional fat suppression 
or the Dixon technique. Conversely, the FO images were 
exclusively obtained using the Dixon technique. In Center 4, 
where the external validation data were collected, the Dixon 
technique was not employed, leading to a lack of FO images. 
In contrast, the MRI protocols in other centers included the 
Dixon technique.

Patient movement during image acquisition may 
introduce variability in lesion localization, leading to 
spatial registration discrepancies and potentially yielding 
misleading information from the ground-truth labels used 
as training data. Discrepancies were identified when pixels 
of images from other sequences did not overlap with the 
lesion drawn on the T1-weighted image by 50% or more. To 
address this issue, series with significant discrepancies were 
excluded from the analysis.

Image Processing and Data Generation
The matrix size in the dataset varied from 320 x 320 

to 1296 x 1296 in the dataset. The images were initially 

fractures and spinal cord or nerve root compression, can 
impair patients’ activities, deteriorate their quality of life, 
and affect their prognosis. This could also be linked to their 
general condition and volition for further treatment [2].

With advancements in cancer treatment, the survival 
of patients with advanced-stage cancer has improved 
[3]. Consequently, the life expectancy of patients with 
metastatic disease is increasing, despite the escalating 
incidence of skeletal metastasis [4]. Moreover, the 
management of bone metastasis is considered imperative, 
extending beyond palliative measures. Therefore, the 
early diagnosis of bone metastasis and detection of spinal 
complications are crucial for guiding treatment decisions. 

MRI is the most sensitive imaging modality for detecting 
and evaluating metastases. However, the increasing number 
of patients undergoing spinal MRI poses challenges in 
interpretation for radiologists. Detecting metastases and 
analyzing the interval changes of these lesions on spinal MRI 
have become increasingly complex and laborious. Recently, 
increasing interest has been directed to deep learning 
and its ability to detect and segment medical imaging 
data [5-9]. Consequently, there is growing expectation for 
adopting deep learning algorithms in the diagnosis of bone 
metastasis.

The aim of this study was to develop and evaluate the 
performance of a deep learning model for the automated 
detection and segmentation of bone metastasis on 
multisequence whole-spine MRI. 

MATERIALS AND METHODS

The Institutional Review Boards of the four participating 
centers approved the study design (IRB approval numbers: 
30-2019-24, 2002-074-1101, B-2002/597-403, 2021-06-
020) and waived the requirement for informed consent 
because of the retrospective nature of the study design.

Study Population
For the training and internal test sets, consecutive 

whole-spine MRI scans from three study centers (Centers 
1–3), obtained between January 2015 and August 2021, 
were collected from the picture archiving communication 
systems of each center. The inclusion criteria were as 
follows: 1) confirmative diagnosis of malignancy and 
2) first spinal MRI for evaluating metastasis, regardless 
of the previous treatment. Patients with 1) global bone 
marrow signal alteration, including diffuse bone metastases 
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scaled to 256 x 256 and the pixel values were then min-
max normalized to integers within the range of (0, 255). 
Subsequently, the images were resized to 224 x 224 
pixels, with 24 slices. Contrast-limited adaptive histogram 
equalization was applied for image preprocessing. The 
training datasets were augmented using rotation (randomly 
within ± 20°), translation (vertical and horizontal axes), 
and zooming (0.9–1.1 range). Conversion of 2D T1-weighted 
sagittal images to 3D data was achieved through slice-
to-volume registration using a commercial image analysis 
platform (AVIEW Research, Coreline Soft, Seoul, Korea). 
SimpleITK version 2.1.1, Numpy version 1.19.5, and Opencv 
version 4.5.4 were used for image processing (Fig. 1).

Ground Truth
To establish the ground truth, two musculoskeletal 

radiologists (with 12 and 8 years of experience) 
collaboratively reviewed the processed 3D images. To 

delineate metastases, cuboid bounding volumes of interest 
(VOIs) were created around lesions. The subsequent 
3D segmentation process was conducted based on the 
radiologists’ consensus. Segmentation precision was 
achieved through the application of a semiautomatic 3D 
segmentation algorithm and the graph-cut technique. A 
refinement step involving 2D segmentation correction 
was incorporated into the process. All procedures were 
performed using an image analysis platform (AVIEW 
Research; Coreline Soft). The methodological workflow is 
illustrated in Figure 1.

All observable osseous lesions were assessed for the 
probability of metastasis through consensus. The primary 
diagnostic criteria for metastasis on MRI included nodular 
hypointense lesions with obliterated fatty marrow signals on 
T1 or FO along with avid enhancement of the corresponding 
lesion on CE. The secondary diagnostic criteria included 
extraosseous soft tissue extension of the lesion and presence 

Volumetric reconstruction

Training set

Volumetric segmentation

Fig. 1. Flowchart of the image data processing method and model development. T1 = non-contrast T1-weighted image, FO = contrast-
enhanced T1-weighted Dixon fat-only image, CE = contrast-enhanced fat-suppressed T1-weighted image 



366

Kim et al.

https://doi.org/10.3348/kjr.2023.0671 kjronline.org

of pathologic compression fractures. In patients in whom 
the diagnosis of metastasis remains uncertain, additional 
imaging studies such as PET, bone scan, chest or abdominal 
CT, performed within a month, were reviewed. If available, a 
follow-up whole-spine MRI was also examined to monitor the 
response or changes in the indeterminate lesion following 
cancer treatment. 

The likelihood of metastasis was evaluated based on the 
following criteria. Indeterminate lesions partially met the 
primary diagnostic criteria, whereas probable metastatic 
lesions met the primary diagnostic criteria but lacked the 
observed features of the secondary diagnostic criteria. 
Lesions that fulfilled both primary and secondary diagnostic 
criteria were classified as definite metastasis. The volume 
of the lesion was calculated by multiplying the pixel size of 
each lesion with x-spacing, y-spacing, and slice thickness.

Pilot Study
During the preliminary phase, we conducted a pilot 

study to optimize imaging sequences for detecting bone 
metastases. Initially, T2-weighted images were included 
because of their good performance in brain and liver tumors 
[10-12]. However, in accordance with the observations 
of Hille et al. [11], T2-weighted images did not exhibit 
enhanced performance. Conversely, the FO sequence 
exhibited a superior contrast-to-noise ratio compared to 
the T1. Consequently, we excluded T2-weighted images 
and chose a combination of T1, FO, and CE images for the 
primary study modeling.

Data Characteristics
The dataset from Centers 1 to 3 was randomly split into 

training and test sets at a ratio of approximately 8:2. The 
area and number of metastases were also considered when 
assigning the training and test sets in an 8:2 ratio. Based 
on the MRI sequences, seven input data combinations 
(T1, FO, CE, T1 + FO, T1 + CE, FO + CE, T1 + FO + CE) were 
created. In combination models, different sequences were 
concatenated on the last axis of the NumPy array. For a 2D 
image, when data were represented as a 3D tensor, they 
included dimensions (height, width, and sequence). This 
implies that each sequence was considered a channel in 
the RGB images. The concatenation of sequences allowed 
the model to interpret the combined information across 
sequences, similar to the manner in which it processes 
different color channels in an RGB image.

Model Architecture and Training
Our models were trained using the 2D and 3D U-Net 

architectures, which are fully convolutional neural networks 
with customized hyperparameters. The model architectures 
were adopted from studies by Ronneberger et al. [13] and 
Çiçek et al. [14] (Supplementary Methods). Up-sampling 
layers with nearest-neighbor interpolation were used 
instead of up-convolution layers. A 3D U-Net extends a 2D 
tensor to a 3D tensor in the existing 2D U-Net. Training 
and evaluation of the models were performed in Python 3.8 
using the Tensorflow library version 2.4.0, with four Nvidia 
GeForce GTX 1080 Ti GPUs.

Reader Study
Five radiologists, including three musculoskeletal 

radiologists (with 5–15 years of experience) and two 
musculoskeletal imaging (with 12-month training) 
from Center 1 participated in the study as independent 
and blinded test readers. None of them participated in 
the ground truth creation. Each radiologist received a 
uniform external dataset presented in randomized order. A 
radiologist reviewed the images and assessed the likelihood 
of metastasis for each detected lesion. They marked the 
VOI on the T1 image by drawing a cube encompassing the 
detected lesion using the image analysis platform (AVIEW 
Research, Coreline Soft).

Evaluation of Performance and Statistical Analysis
To assess segmentation performance, we employed the 

Sørensen–Dice coefficient, pixel-wise recall, and pixel-
wise precision [15,16]. The detection performance of 
the selected models, chosen according to segmentation 
performance and data availability, and radiologists were 
assessed through the evaluation of per-lesion sensitivity, 
per-lesion positive predictive value, and free-response 
receiver operating characteristic (ROC) curve. Lesions 
detected by the model were considered true-positives if 
they had at least 10 pixels overlapping with a ground-
truth area, and false-positives if they had less than 10 
pixels overlapping with any of the ground-truth areas. 
Segmentation and detection performance were assessed 
with descriptive statistics and 95% confidence intervals 
[CIs], using the bootstrap technique. Continuous data were 
presented in mean ± standard deviation when applicable. 
Statistical analyses were conducted using the Scikit-learn 
library version 2.1.1 in Python.
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RESULTS

Patient and Data Characteristics
A total of 662 MRI series from 302 patients (151 male 

and 151 female; age, 63.5 ± 11.5 years) obtained from 
three centers (Center 1, 220 series; Center 2, 210 series; 
Center 3, 232 series) were included as an internal dataset 
(Table 1, Fig. 2A). To train the models, 536 series were 
used. A total of 126 MRI series were used as the internal 
test sets. Notably, 4343 metastases were segmented, 
including 2519 lesions measuring ≤ 1.0 cm3. The number of 
lesions per patient was 12.5 ± 20.7.

For the external dataset, 49 MRI series of 20 patients 
(11 male and 9 female; 65.9 ± 11.5 years) were collected 
from Center 4. These were used for the external tests of the 
CE, T1, and T1 + CE models (Fig. 2B). Further details are 
provided in Table 1.

Segmentation Performance 
Table 2 summarizes the segmentation performance 

of the selected models (2D CE, T1, and T1 + CE) in the 
external testing, with an illustrative example shown in 
Figure 3. Supplementary Table 3 presents the segmentation 
performance of all models in the internal test. The 2D 
models trained with T1 and CE sequences and T1, CE, and 
FO sequences showed consistently higher performance 
than that of other models in the internal testing. The 

performance of the 3D models was consistently inferior to 
that of the 2D models. We chose the 2D T1 + CE model (and 
its single-image sequence models) for external testing, 
considering its performance in internal testing and the 
lack of an FO sequence in the external test set. The T1 + CE 
model showed a Dice coefficient of 0.699 (95% CI, 0.695–
0.702) and pixel-wise recall of 0.653 (95% CI, 0.651–0.655) 
in external testing.

Detection Performance 
Table 3 summarizes the per-lesion sensitivity for 

metastasis of the selected models (2D CE, T1, and T1 + CE), 
with an illustrative example shown in Figure 4. The T1 + 
CE model exhibited superior per-lesion sensitivity across 
all volume ranges in both internal and external testing. 
Notably, per-lesion sensitivity increased as lesion size 
increased. Despite the overall lower performance metrics, 
there were instances where the T1 or CE models detected 
lesions (true-positive detection by the T1 or CE models) 
that were overlooked by the T1 + CE model (Fig. 5). The 
per-lesion sensitivity for each center is presented in 
Supplementary Table 4.

Comparison of Detection Performance of Models with 
Human Readers

Table 4 presents an overview of the detection 
performance of the models and radiologists in external 

Table 1. Characteristics of the patients and datasets

Train set Internal test set External test set 
Patients         242 60 20
Age, yr 63.5 ± 12.1 64.0 ± 9.7 65.9 ± 11.5
Sex

Male         126 25 11
Female         116 35 9

Series*         536 126 49
Images       8615     2100 704
Labeled area, cm2 2478224 535952 223152
Metastasis lesions       3743       600 175
Volume of each metastasis, cm3

≤ 0.5   769 (20.5)   81 (13.5) 24 (13.7)
> 0.5 to ≤ 1.0 1449 (38.7) 220 (36.7) 35 (20.0)
> 1.0 to ≤ 2.0 1016 (27.1) 200 (33.3) 34 (19.4)
> 2.0   509 (13.6)   99 (16.5) 82 (46.9)

Metastases per patient 13.1 ± 21.1 10.3± 13.6 8.75 ± 5.5

Data are number of patients or lesions with percentages in parentheses, or mean ± standard deviation.
*Series indicates a stack of T1-weighted sequences from each patient. For whole spine MRI is acquired in two or three subsequent 
scans for large coverage, from the skull base to the coccyx, MRI of each patient consists of two to three series of T1-weighted image, 
depending on the protocol of the study center and MRI machine
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 Excluded
    - ‌�27 patients without any 

reference examination for 
diagnosis of metastasis

 Excluded
    - ‌�28 patients without bone 

metastasis
    - ‌�73 patients with diffuse 

or innumerable metastases
    - ‌�5 patients with suboptimal 

image quality

 Excluded
    - ‌�28 patients without bone 

metastasis
    - ‌�64 patients with diffuse 

or innumerable metastases
    - ‌�20 patients with 

suboptimal image quality

 Excluded
    - ‌�18 patients without any 

reference examination for 
diagnosis of metastasis

 Excluded
    - ‌�29 patients without any 

reference examination for 
diagnosis of metastasis

Initial image 
evaluation

220 MRI series 
from 110 patients

210 MRI series 
form 107 patients

662 MRI series 
from 302 patients 

for internal data set

Training set 
536 MRI series 

from 242 patients

Internal test set 
126 MRI series from 

60 patients

Initial image 
evaluation

Initial image 
evaluation

Center 3
(n = 191)

Center 2
(n = 237)

 Excluded
    - ‌�9 patients without bone 

metastasis
    - ‌�37 patients with diffuse or 

innumerable metastases
    - ‌�12 patients with 

suboptimal image quality

 Excluded
    - ‌�8 patients without any 

reference examination for 
diagnosis of metastasis

49 MRI series 
from 20 patients 

for external test set

Initial image 
evaluation

Center 4
(n = 86)

Center 1
(n = 243)

 Excluded
    - ‌�11 patients without bone 

metastasis
    - ‌�45 patients with diffuse or 

innumerable metastases
    - ‌�21 patients with 

suboptimal image quality

232 MRI series 
from 85 patients

A B

Fig. 2. Flowchart of data acquisition and selection. A: Internal data set. B: External test set. 

Table 2. Segmentation performance at external test

Model
2D

Dice coefficient Pixel-wise recall Pixel-wise precision
T1 + CE 0.699 (0.695–0.702) 0.653 (0.651–0.655) 0.752 (0.750–0.754)

T1 0.570 (0.568–0.572) 0.465 (0.463–0.467) 0.736 (0.734–0.738)
CE 0.409 (0.404–0.413) 0.410 (0.408–0.412) 0.408 (0.406–0.410)

Data in parentheses are 95% confidence interval.
T1 = non-contrast T1-weighted image, CE = contrast-enhanced fat-suppressed T1-weighted image

testing. The T1 + CE model exhibited the highest per-
lesion sensitivity of 0.857 (95% CI, 0.805–0.909) and 
per-lesion positive predictive value of 0.794 (95% CI, 
0.766–0.821). The T1 model demonstrated a slightly higher 
per-lesion positive predictive value at 0.771 (95% CI, 
0.709–0.834), whereas the CE model demonstrated a per-
lesion sensitivity of 0.714 (95% CI, 0.647–0.781). The free-
response ROC curves of the models are shown in Figure 6. 
In the reader study, the radiologists achieved a mean per-
lesion sensitivity of 0.746 (95% CI, 0.543–0.960) and a 
mean per-lesion positive predictive value of 0.701 (95% 
CI, 0.511–0.882). Concerning false positives per series, the 
T1 + CE model demonstrated the lowest average at 0.384, 
followed by the radiologists at 1.338 (95% CI, -0.07–2.83), 
the T1 model at 0.797 (95% CI, 0.715–0.879), and the CE 
model at 2.263 (95% CI, 2.114–2.412).

False-Positive Model Results
The T1 + CE model, which exhibited the best performance, 

presented false positive results involving 17 lesions 
mistakenly identified as metastases in the results of the 
internal test. These false-positive lesions consisted of 
compression fractures (n = 4), degenerative changes (n = 
3), thyroid gland (n = 1), vertebroplasty (n = 1), piriformis 
muscle (n = 2), facet joint (n = 1), costovertebral joint (n = 
1), intervertebral disc (n = 1), magnetic field inhomogeneity 
(n = 1), and contrast artifact (n = 2).

DISCUSSION

In the present study, we developed deep learning models 
to detect and segment bone metastases on spinal MRI 
and compared their performance with that of radiologists. 
The model trained with a combination of two sequences 
(T1 + CE) exhibited the best segmentation and detection 
performance in external testing. The per-lesion sensitivity of 
the T1 + CE model for metastases of > 1.0 cm3 was 0.931 in 
the external test sets with a low false-positive rate. In the 
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Ground truth

Dice coefficient 0.866 0.808 0.409

  Ground truth     True positive     False positive     False negative

0.663

T1 + CE model T1 model CE model FO model

Fig. 3. Ground truth and prediction by models are labeled on the MRI of a 55-year-old female diagnosed with lung cancer. The images 
demonstrate the segmentation performance of the T1 + CE, T1, CE, and FO models. A prediction of the T7 vertebral body metastasis is 
outlined with light blue and shown as the volume of the blue region on volume rendering images. The prediction of the T1 + CE model 
shows more precise region segmentation than that of the rest of the models. T1 = non-contrast T1-weighted image, CE = contrast-
enhanced fat-suppressed T1-weighted image, FO = contrast-enhanced T1-weighted Dixon fat-only image

Table 3. Per-lesion sensitivity of the models for metastasis detection

Lesion volume 
(cm3)

T1 + CE T1 CE
Internal test External test Internal test External test Internal test External test

≤ 0.5 0.457 (37/81) 0.667 (16/24) 0.136 (11/81)  0.542 (13/24) 0.296 (24/81)  0.333 (8/24)
> 0.5 to ≤ 1.0 0.814 (179/220)  0.743 (26/35) 0.450 (99/220) 0.686 (24/35) 0.459 (101/220)  0.600 (21/35)
> 1.0 to ≤ 2.0 0.915 (183/200)  0.794 (27/34) 0.705 (141/200) 0.735 (25/34) 0.725 (145/200) 0.588 (20/34)
> 2.0 0.990 (98/99) 0.988 (81/82) 0.980 (97/99) 0.890 (73/82) 0.889 (88/99) 0.927 (76/82)
Total 0.828 (497/600)  0.857 (150/175) 0.580 (348/600) 0.771 (135/175) 0.597 (358/600) 0.714 (125/175)

Data in parentheses are raw number (i.e., numerator/denominator). 
T1 = non-contrast T1-weighted image, CE = contrast-enhanced fat-suppressed T1-weighted image

reader study, radiologists achieved a per-lesion sensitivity of 
0.746 and a per-lesion positive predictive value of 0.701.

Despite progress in deep learning for other body 
parts, only a few approaches focus on diagnosing spinal 
metastases. Wang et al. [17] using the Siamese neural 
network architecture revealed the potential for the 
automated detection of spinal metastasis. They used only 
26 cases of a single sequence (fat-suppressed T2-weighted 
MRI) as datasets. However, we used larger datasets of 
multisequence, multicenter, and multivendor MRI scans. Our 
findings provide further evidence of the model’s application 
in clinical practice. Another study in which the researchers 
built a deep learning model based on the U-Net architecture 
reported a Dice coefficient per metastasis of 0.776, similar 

to our results [15]. Although their results showed good 
segmentation accuracy, it should noted that the researchers 
used only 40 cropped images from the original MRI. 
Conversely, in our study, we used whole-image set of the 
spinal MRI as the training and testing sets, demonstrating 
similar or slightly superior performance compared with 
their results. Our models could predict metastases on 
original MRI, suggesting their applicability in actual clinical 
practice.

With advancements in the field of deep learning in 
medical imaging, there is an increasing interest in providing 
support to radiologists. Current technology cannot replace 
experienced radiologists in making diagnoses. Nevertheless, 
our reader study demonstrated comparable performance 
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Unlabeled T1 Ground truth
Labeled on T1

Prediction by T1 + CE model

Labeled on CE Labeled on FO

  Ground truth     True positive     False positive     False negative

Fig. 4. Ground truth and prediction by the T1 + CE model are labeled on the MRI of a 62-year-old female diagnosed with breast cancer. 
The images illustrate the detection performance of the T1 + CE model. Each image sequence includes labeled indications of model-
predicted true positive lesions, outlined in light blue, and false-negative lesions, outlined in red. The model predicted majority of the 
metastases, except for a diminutive lesion at T8 inferior endplate. T1 = non-contrast T1-weighted image, CE = contrast-enhanced fat-
suppressed T1-weighted image, FO = contrast-enhanced T1-weighted Dixon fat-only image

  Ground truth     True positive     False positive     False negative

Ground truth Unlabeled CE Prediction by 
T1 + CE model

Prediction by 
T1 model

Fig. 5. Images of a 54-year-old female diagnosed with colon cancer. The metastases at L5 and the S1 vertebral bodies (arrows) were 
predicted by the T1 model, while the T1 + CE model missed both the lesions, showing faint enhancement on the CE. The T1 model also 
showed better segmentation prediction of another detected lesion (arrowheads) than that by the T1 + CE model. T1 = non-contrast T1-
weighted image, CE = contrast-enhanced fat-suppressed T1-weighted image

Table 4. Detection performance of the models and radiologists in the external test

T1 + CE T1 CE Radiologists*
Per-lesion sensitivity 0.857 (0.805–0.909) 0.771 (0.709–0.834) 0.714 (0.647–0.781) 0.746 (0.543–0.960)
Per-lesion positive predictive value 0.794 (0.766–0.821) 0.708 (0.678–0.739) 0.409 (0.388–0.429) 0.701 (0.511–0.882)
Average number of FP per series 0.384 (0.328–0.439) 0.797 (0.715–0.879) 2.263 (2.114–2.412) 1.338 (-0.071–2.833)

The data in parentheses are 95% confidence intervals. 
*Data are the average values of five radiologists.
T1 = non-contrast T1-weighted image, CE = contrast-enhanced fat-suppressed T1-weighted image, FP = false positive
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of the combination (T1 + CE) model and radiologists. 
Its application in spinal metastasis detection can assist 
radiologists in identifying lesions more easily, especially 
those that are challenging to detect through routine 
radiological reviews. With the growing volume of medical 
images and radiologist workloads, further development of 
artificial intelligence is expected to play a role in improving 
diagnostic accuracy and efficiency in daily practice. 

Our study has some limitations. First, the models were 
exclusively trained with metastatic cases, leading to 
false-positive predictions in benign lesions with similar 
appearances, such as compression fractures or Schmorl 
nodes. efinement is necessary to improve the distinction 
between lesions. Second, patients with global bone 
marrow signal alterations were excluded, as distinguishing 
metastases in the presence of diffusely altered bone marrow 
signal intensity is challenging for radiologists, complicating 
ground-truth drawing. This study serves as a preliminary step 
in metastasis detection and highlights the need for further 
development. Third, our dataset, although at baseline in 
each center, included images of pre- and post-treatment 
lesions. Post-treatment metastases may show different 
features, potentially affecting the models’ performance. 
Finally, current models use sagittal images, limiting 
volumetric information. Future development with additional 
axial or 3D images is essential for comprehensive metastasis 

diagnosis.
In conclusion, we developed an automated segmentation 

and detection model for spinal metastases using 
multisequence MRI obtained from three different centers. 
The combination model exhibited a high diagnostic 
performance in both segmentation and detection. This 
model may potentially support radiologists in clinical 
practice, leading to improvements in the diagnostic 
accuracy and efficiency for assessing spinal metastases.  
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