• Title/Summary/Keyword: Set Covering Problem

Search Result 60, Processing Time 0.031 seconds

An Integer Programming-based Local Search for the Set Partitioning Problem

  • Hwang, Junha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.9
    • /
    • pp.21-29
    • /
    • 2015
  • The set partitioning problem is a well-known NP-hard combinatorial optimization problem, and it is formulated as an integer programming model. This paper proposes an Integer Programming-based Local Search for solving the set partitioning problem. The key point is to solve the set partitioning problem as the set covering problem. First, an initial solution is generated by a simple heuristic for the set covering problem, and then the solution is set as the current solution. Next, the following process is repeated. The original set covering problem is reduced based on the current solution, and the reduced problem is solved by Integer Programming which includes a specific element in the objective function to derive the solution for the set partitioning problem. Experimental results on a set of OR-Library instances show that the proposed algorithm outperforms pure integer programming as well as the existing heuristic algorithms both in solution quality and time.

THE CONDITIONAL COVERING PROBLEM ON UNWEIGHTED INTERVAL GRAPHS

  • Rana, Akul;Pal, Anita;Pal, Madhumangal
    • Journal of applied mathematics & informatics
    • /
    • v.28 no.1_2
    • /
    • pp.1-11
    • /
    • 2010
  • The conditional covering problem is an important variation of well studied set covering problem. In the set covering problem, the problem is to find a minimum cardinality vertex set which will cover all the given demand points. The conditional covering problem asks to find a minimum cardinality vertex set that will cover not only the given demand points but also one another. This problem is NP-complete for general graphs. In this paper, we present an efficient algorithm to solve the conditional covering problem on interval graphs with n vertices which runs in O(n)time.

On a Set Covering Model to Maximize Reliability (신뢰도를 최대화하는 지역담당 모델)

  • Oh, Jae-Sang;Kim, Sung-In
    • Journal of the military operations research society of Korea
    • /
    • v.8 no.1
    • /
    • pp.53-70
    • /
    • 1982
  • This thesis develops a more realistic and applicable new set covering model that is adjusted and supplied by the existing set covering models, and induces an algorithm for solving the new set covering model, and applies the new model and the algorithm to an actual set covering problems. The new set covering model introduces a probabilistic covering aistance ($0{\eqslantless}p{\eqslantless}1$)or time($0{\eqslantless}p{\eqslantless}1$) instead of a deterministic covering distance(0 or 1) or time (0 or 1) of the existing set covering model. The existing set covering model has not considered the merit of the overcover of customers. But this new set covering model leads a concept of this overcover to a concept of the parallel system reliability. The algorithm has been programmed on the UNIVAC 9030 for solving large-scale covering problems. An application of the new set covering model is presented in order to determine the locations of the air surveillance radars as a set covering problem for a case-study.

  • PDF

Set Covering Problem and Reliability of the Covers

  • Liu, Y.-H.;Tzeng, G.-H.;Park, Dong-Ho
    • International Journal of Reliability and Applications
    • /
    • v.5 no.4
    • /
    • pp.147-154
    • /
    • 2004
  • This work developed and algorithm for a set covering model when the reliability of covers is a concern. This model extended the usage of the set covering model.

  • PDF

An Enhanced Simulated Annealing Algorithm for the Set Covering Problem (Set Covering 문제의 해법을 위한 개선된 Simulated Annealing 알고리즘)

  • Lee, Hyun-Nam;Han, Chi-Geun
    • IE interfaces
    • /
    • v.12 no.1
    • /
    • pp.94-101
    • /
    • 1999
  • The set covering(SC) problem is the problem of covering all the rows of an $m{\times}n$ matrix of ones and zeros by a subset of columns with a minimal cost. It has many practical applications of modeling of real world problems. The SC problem has been proven to be NP-complete and many algorithms have been presented to solve the SC problem. In this paper we present hybrid simulated annealing(HSA) algorithm based on the Simulated Annealing(SA) for the SC problem. The HSA is an algorithm which combines SA with a crossover operation in a genetic algorithm and a local search method. Our experimental results show that the HSA obtains better results than SA does.

  • PDF

An Empirical Study for Satisfiability Problems in Propositional Logic Using Set Covering Formulation (집합 피복 공식화를 이용한 명제논리의 만족도 문제에 대한 계산실험 연구)

  • Cho, geon
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.27 no.4
    • /
    • pp.87-109
    • /
    • 2002
  • A satisfiability problem in propositional logic is the problem of checking for the existence of a set of truth values of atomic prepositions that renders an input propositional formula true. This paper describes an empirical investigation of a particular integer programming approach, using the set covering model, to solve satisfiability problems. Our satisfiability engine, SETSAT, is a fully integrated, linear programming based, branch and bound method using various symbolic routines for the reduction of the logic formulas. SETSAT has been implemented in the integer programming shell MINTO which, in turn, uses the CPLEX linear programming system. The logic processing routines were written in C and integrated into the MINTO functions. The experiments were conducted on a benchmark set of satisfiability problems that were compiled at the University of Ulm in Germany. The computational results indicate that our approach is competitive with the state of the art.

Set Covering-based Feature Selection of Large-scale Omics Data (Set Covering 기반의 대용량 오믹스데이터 특징변수 추출기법)

  • Ma, Zhengyu;Yan, Kedong;Kim, Kwangsoo;Ryoo, Hong Seo
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.39 no.4
    • /
    • pp.75-84
    • /
    • 2014
  • In this paper, we dealt with feature selection problem of large-scale and high-dimensional biological data such as omics data. For this problem, most of the previous approaches used simple score function to reduce the number of original variables and selected features from the small number of remained variables. In the case of methods that do not rely on filtering techniques, they do not consider the interactions between the variables, or generate approximate solutions to the simplified problem. Unlike them, by combining set covering and clustering techniques, we developed a new method that could deal with total number of variables and consider the combinatorial effects of variables for selecting good features. To demonstrate the efficacy and effectiveness of the method, we downloaded gene expression datasets from TCGA (The Cancer Genome Atlas) and compared our method with other algorithms including WEKA embeded feature selection algorithms. In the experimental results, we showed that our method could select high quality features for constructing more accurate classifiers than other feature selection algorithms.

Conditional Covering : Worst Case Analysis of Greedy Heuristics

  • Moon, I.Douglas
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.15 no.2
    • /
    • pp.97-104
    • /
    • 1990
  • The problem is a variation of the weighted set-covering problem (SCP) which requires the minimum-cost cover to be self-covering. It is shown that direct extension of the well-known greedy heuristic for SCP can have an arbitrarily large error in the worst case. It remains an open question whther these exists a greedy heuristic with a finite error bound.

  • PDF

AN ANALYSIS OF PARALLEL ROUTING ALGORITHM OF HYPERCUBE NETWORK BY EMPLOYING COVERING PROBLEM AND ASSIGNMENT PROBLEM

  • Chung, Il-Yong
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.2
    • /
    • pp.535-543
    • /
    • 1997
  • The application of Hadamard matrix to the paral-lel routings on the hypercube network was presented by Rabin. In this matrix every two rows differ from each other by exactly n/2 positions. A set of n disjoint paths on n-dimensional hypercube net-work was designed using this peculiar property of Hadamard ma-trix. Then the data is dispersed into n packets and these n packet are transmitted along these n disjoint paths. In this paper Rabin's routing algorithm is analyzed in terms of covering problem and as-signment problem. Finally we conclude that n packets dispersed are placed in well-distributed positions during transmisson and the ran-domly selected paths are almost a set of n edge-disjoint paths with high probability.

An Integer Programming-based Local Search for the Set Covering Problem (집합 커버링 문제를 위한 정수계획법 기반 지역 탐색)

  • Hwang, Jun-Ha
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.10
    • /
    • pp.13-21
    • /
    • 2014
  • The set covering problem (SCP) is one of representative combinatorial optimization problems, which is defined as the problem of covering the m-rows by a subset of the n-columns at minimal cost. This paper proposes a method utilizing Integer Programming-based Local Search (IPbLS) to solve the set covering problem. IPbLS is a kind of local search technique in which the current solution is improved by searching neighborhood solutions. Integer programming is used to generate neighborhood solution in IPbLS. The effectiveness of the proposed algorithm has been tested on OR-Library test instances. The experimental results showed that IPbLS could search for the best known solutions in all the test instances. Especially, I confirmed that IPbLS could search for better solutions than the best known solutions in four test instances.