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Abstract. This work developed an algorithm for a set covering model when the
reliability of covers is a concern. This model extended the usage of the set covering
model.
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1. INTRODUCTION

A set covering problem considers the subsets I = {1, 2, ..., m} and J = {1, 2, ..., n}
of integers. Let PjCland o ={Pj:j €10},J0CJ. Clearly, @ is a collection of subsets,
Pj, of I. A collectionp = {Pj : j € JO}, is a cover for I if U p; =1. The set covering

€lo
problem determines a cover £, with minimum cost which is formulated as follows:

n

Min 2cjxj
=
n
s.t Eai}.xj 21,i=1,2,..,m,

]

X, €E{0,1,j=1,2, ..,n,
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where
[Lif REP
i {0, otherwise
and

1, ifiepP,
g 0, otherwise.

This set covering problem is well known with many applications such as facility
location, assigning customers to delivery routes, airline crews to flights, and workers to

shifts, etc. (Beasley 1987; Fisher and Kedia 1990; Nembhauser and Wolsey, 1988).
In reality, i € P, can fail sometimes. Thus, sometimes the probability of i€ P, can be

less than 1; denoting probability of i€ P, as 7,(i) ,

Then, the set covering problem is no longer straight forward. It is become probabilistic,
and 7 (i) can be considered as the reliability of i€ P, .

Let
Qj = {(i’”,'(i) : iEPj}
=(P,7;), j€J,
We are finding a cover with minimal cost and maximal reliability. We call this problem as
“the problem of set covering and reliability of covers”(SCRC).

Let Q={Q,:j€J,}, J,CJ ,and Q; =(P;,7;) and Up-=I.
j€Jy

i ) minimize total cost
Thus the (SCRC) is to simultaneously .. o
maximize cover reliability

min ) C,
JoEl ]

max REQ)

oce

C.

]

=S
or min
o _R(U QJ)

j€Jy
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2. RELIABILITY OF COVERS

Let

Qj =(Pj’”j)
={G,7;():i€EP}

We define the operations among Q; 's as follows:
Definition.

1. QUQ, = UPB,m,)

2. [LJ Ql=(ILJJI)I’”UIEJ(])

where
75 (0) = 1= (1= 7 () - 7, (i)
7. @) =1—1;[(1‘”1(i))

(SCRC) is a multij-objective 0-1 integer programming problem, which is formulated as
follows:

n

min chxj
]-

- 1—]:[(1-751. O)x)

i=12,.,m
st. x;=0,1 j=12,..m

_[LitPeEp
710, otherwise

where

if x, €{0,1}, then 1- 7, (i)x = (1- 7, (i))"” .
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Therefore 1_ﬁ(l—”j(i)xj) =1—1L\[(1—7rj(i))x’ :

Then (SCRC) can be formulate as

n

min zc].x].
]-

max o
st. 1-] |A-7,G)" ze,i=1,2,..,n

%, €{0,1)

Observe that

1-ﬁ(1—nj(i))”f >

l1-a zll)[(l—iz'j(i))x"

n

In(l-a) = Zx,. In(1-7,(i))

n

-2 x,In(1-7,()) = ~In(l- @)

ijln 1 —z1In 1
4 1-7z,() 1-o

Thus, we obtain the following (SCRC) which is ready for solution.

n
min 201.x].
J-
max o

(SCRO) s.t.ijln 1 —=21In 1 ,i=12,...n
4= 1-7,@) l-«a

x, €{0,1}

To “solve” this bi-objective 0-1 linear program problem, we apply the constrain method
by controlling & and minimizing the cost. The following is the proposed solution method.
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. X 1
Step 0: Determine & = max{«x : 2 L —=>In ,x; €{0,1}}.
In(1-7,() l-a
Choose ¢, = minimal acceptable level chosen by DM.
Let A= 2 —% , k is a given positive integer.
Stepl:
o, =a.+A
a,=a +A

o, =a,,+A

o =a,=q,_,+A

Step 2: Fori=1,2,....,k. solve (P)

n

min zcjxj
]-
1

n x
(B)| s+ 2 : zIn
o In(l-7,,) l-a

X, €{0,1}

obtain optimal objective value z; .
Step3: Analyze (at;,2; )i =1,2,...,k.

Step4: DM choose i, such that ( F) give the DM an optimal decision.

3. EXAMPLE

Let I={1, 2, 3, 4, 5}. Suppose that there are four fuzzy subsets of /, and each is
represented as follows: 131 = {(1, 0.4), (2, 0.1), (3, 0.5), (4, 0.7), (5, 0.8)}, 1‘52 = {(1, 0.1),

(2,03), (3,08), (4,0.2), (5, 0.6)}, B = {(1,03),2,0.7), 3,0.2), (4, 0.9), (5, 0.4)}, and
13; = {(1, 0.5), (2, 0.9), (3, 0.4), (4, 0.1), (5, 0.2)}. Table 1 shows the matrix of (i), i =



152 Set Covering Problem and Reliability of the Covers

1,2, ..,5j=1,2, ..,4. And we associate each E with the corresponding cost ¢;, j = 1,

2, ..., 4, shown as table 1.

Table 1. The matrix of u,(i)

i=1 i=2 i=3 =4 i=5
P, (c1=4) 0.4 0.1 0.5 0.7 0.8
P, (c=3) 0.1 0.3 0.8 0.2 0.6
B, (c5=5) 0.3 0.7 0.2 0.9 0.4
P, (c=2) 0.5 0.9 0.4 0.1 0.2

According to the (P1) model, we then have the following mathematical
programming:

n

Min chxj =dx; + 30+ 5y + 2x,
]-

s.t.
1-[(1-0.4x,)(1 - 0.1x,)(1 - 0.3x,)(1- 0.5x,)] =

1-[(1-0.1x)1-0.3x,)1-0.7x,)1-0.9x,)] =z «
1-[(1~0.5x)(1-0.8x,)(1-0.2x;,)(1-0.4x,)]z
1-[1~0.7%)1-0.2x,)1-0.9x,)(1-0.1x,)] z «
1-[1-0.8x,)(1-0.6x,)(1-0.4x,)1-0.2x,)] z &«
x,€{0,1},j=1,2, .., 4.

Calculating the inequalities of constraint, we can rewrite the above formulation as P2’s
form:

Min 4x,+3x,+5x3+ 2x4

s.t.
0.4x; + 0.1x; + 0.3x3 + 0.5x4 — 0.04xx; — 0.12x1x3 — 0.02x:x4 — 0.03x5x; — 0.05x5x4 —
0.15x3x4 + 0.012x105%3 + 0.02x 1x2x4 + 0.061x3x4 + 0.015x365 — 0.006x 1630, 2 @
0.1x; + 0.3x; + 0.7x3 + 0.9x, — 0.03x1x; — 0.07x1x3 — 0.09x,, — 0.021x503 — 0.27x2%4 —
0.63x3x4 +0.021x1x5x3 + 0.027x1x2x4 + 0.063x1x3x4 + 0.189x,x3x4 — 0.0189x 1xx3x5 2
0.5x1 + 08x2 + 0.2X3 + 0.4X4 - 0.4x1x2 - 0.1X1X3 - 0.2x1x4 - 0.16.XT2X3 - 0.3ZX2X4 -
0.08x3x4 + 0.08x1x5x3 + 0.16x1x2x4 + 0.04x1x3x4 + 0.064x,x,x, — 0.032x:1x00304 2 @
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0.7x1 + 0.2x; + 0.9x3 + 0.1x4 — 0.14x1x; — 0.63x1x3 — 0.07x3x5 — 0.18x2x03 — 0.02x,x5 —

0.09x3x4 +0.126x1x5x3 + 0.014x 154 + 0.063x1x3x4 + 0.018x5x3x4 — 0.0126x,%:X3%4 2 &

0.8x; + 0.6x; + 0.4x; + 0.2x4 — 0.48x,x; — 0.32x1x3 — 0.16x3x5 — 0.24xx03 — 0.12x0,x, —

0.08x3x4 + 0.192x1x5x3 + 0.096x1x,x4 + 0.064x1x3x4 + 0.048x,x3x, — 0.0384x:x:x3x4 = &
x; €{0,1},j=1,2, ..., 4.

Suppose the desired level o =0.5. Let y dheds =X XX For instance, y;; = x1x,,

Y123 = X1X2X3, Y1234 = X1X2X3Xs, €tC. Then, we obtain the formulation of the form of (P3):

Min 4x,+3x,+5x3+2x4
s.t.

0.4x; +0.1x, +0.3x3 + 0.5x, — 0.04y,, — 0.12y13— 0.2y14 — 0.03y,3 — 0.05y24— 0.15y;4 +
0.012y123 + 0.02y124 + 0.06y134 + 0.015)’234 - 0.006}’1234 2 0.5

0.1x; +0.3x + 0.7x3 + 0.9x,— 0.03 y1,— 0.07 y;3—0.09 y14—0.021 y,3—0.27 y2,—0.63
Y34 +0.021 Y123 +0.027 Y124 +0.063 Y134 +0.189 Yaza— 0.0189 Y1232 0.5

O.le + OSXZ + OZX’3 + 0.4X4" 04 Yiz™—™ 0.1 Yi3— 0.2 Yia— 0.16 Y~ 0.32 Yaa— 0.08 Yaa
+0.08 Y123 +0.16 Y124 +0.04 Y134 +0.064 Ya3za— 0.032 Yi23a2 0.5

0.7x; +0.2x, +0.9x3 + 0.1x,— 0.14 y12—0.63 y13—0.07 y14— 0.18 y»3—0.02 y»,— 0.09
Yt 0.126 Y123 +0.014 Y124 +0.063 Y13 +0.018 Y234™— 0.0126 Yoz

O.&x1 + 06x2 + O.4X3 + O.Zx4— 0.48 Yi2— 0.32 Yi3— 0.16 Yia— 0.24 Y23~ 0.12 Yos— 0.08
V341 0.192 y123+ 0.096 y124+0.064 y134 +0.048 yr3,— 0.0384 y12342 0.5

2y, sx+x,sl+y,

2yssx+xysl+ty,

2y, sx+x,sl+y,

2ypsx, +x;s1+yy

2Yusx, +x,sl+y,

2y, sx,+x,sl+y,

2V S Y+ X s1+ Yy,

29104 S Yo + X, S 14y,

215 S Y1t X, S 14 yyy,

2Yp SYptx,sl+y,,

2Yi03 S Yipy + Xy S 1+ Yy,

X; €{0,1},j=1,2, .., 4

Solving the programming problem by LINGO software, we obtain the optimal solution x1
=1, x, =0, x, =0, x, =1, and the total cost is 6.
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