Set Covering Problem and Reliability of the Covers

Y-H. Liu*

Marketing and Distribution Management 48, Hsuan Chuan Road Hsiang San District, Hsinchu, 300, Taiwan

G. H. Tzeng

Institute of Management of Technology, National Chiao Tung University 1001 Ta Hsueh Road, Hsinchu, 300, Taiwan

Dong Ho Park**

Hallym University, Seoul, Koera

Abstract. This work developed an algorithm for a set covering model when the reliability of covers is a concern. This model extended the usage of the set covering model.

Key Words: set covering, reliability of cover, minimal cost, maximal reliability, integer programming.

1. INTRODUCTION

A set covering problem considers the subsets $I = \{1, 2, ..., m\}$ and $J = \{1, 2, ..., n\}$ of integers. Let $Pj \subset I$ and $\mathscr{D} = \{Pj : j \in J0\}$, $J0 \subset J$. Clearly, \mathscr{D} is a collection of subsets, Pj, of I. A collection $\mathscr{D} = \{Pj : j \in J0\}$, is a cover for I if $\bigcup_{i \in I_n} p_i = I$. The set covering

problem determines a cover \wp^* , with minimum cost which is formulated as follows:

Min
$$\sum_{j=1}^{n} c_{j} x_{j}$$

s.t $\sum_{j=1}^{n} a_{ij} x_{j} \ge 1, i = 1, 2, ..., m,$
 $x_{j} \in \{0, 1\}, j = 1, 2, ..., n,$

^{*} This research is supported by the grant NSC92-2416-H-009-008.

^{**} Corresponding Author. E-mail address: dhpark@sun.hallym.ac.kr

148

where

$$x_j = \begin{cases} 1, & \text{if } P_j \in \mathcal{D}^* \\ 0, & \text{otherwise} \end{cases}$$

and

$$a_{ij} = \begin{cases} 1, & \text{if } i \in P_j, \\ 0, & \text{otherwise.} \end{cases}$$

This set covering problem is well known with many applications such as facility location, assigning customers to delivery routes, airline crews to flights, and workers to shifts, etc. (Beasley 1987; Fisher and Kedia 1990; Nemhauser and Wolsey, 1988).

In reality, $i \in P_j$ can fail sometimes. Thus, sometimes the probability of $i \in P_j$ can be less than 1; denoting probability of $i \in P_j$ as $\pi_j(i)$,

Then, the set covering problem is no longer straight forward. It is become probabilistic, and $\pi_i(i)$ can be considered as the reliability of $i \in P_i$.

Let

$$Q_{j} = \{(i, \pi_{j}(i) : i \in P_{j}\}\$$
$$= (P_{i}, \pi_{i}), j \in J_{0}$$

We are finding a cover with minimal cost and maximal reliability. We call this problem as "the problem of set covering and reliability of covers" (SCRC).

Let
$$Q = \{Q_j : j \in J_0\}$$
, $J_0 \subset J$ and $Q_j = (P_j, \pi_j)$ and $\bigcup_{j \in J_0} P_j = I$.

Thus the (SCRC) is to simultaneously

maximize total cost
maximize cover reliability

i.e.
$$\begin{cases} \min_{J_0 \in J} \sum_{j \in J_0} C_j \\ \max_{Q \subset \Theta} R(Q) \end{cases}$$

or
$$\min_{J_0 \subset J} \begin{cases} \sum_{j \in J_0} C_j \\ -R(\bigcup_{j \in J_0} Q_j) \end{cases}$$

2. RELIABILITY OF COVERS

Let

$$Q_j = (P_j, \pi_j)$$

$$= \{(i, \pi_j(i)) : i \in P_j\}$$

We define the operations among Q_j 's as follows:

Definition.

1.
$$Q_l \cup Q_k = (\Gamma_l \cup \Gamma_k, \pi_{l \cup k})$$
2.
$$\bigcup_{l \in J_0} Q_l = (\bigcup_{l \in J} P_l, \pi_{\bigcup_{l \in J_0}})$$

where

$$\pi_{j \cup k}(i) = 1 - (1 - \pi_{j}(i))(1 - \pi_{k}(i))$$

$$\pi_{\bigcup i \in J_{0}}(i) = 1 - \prod_{l \in J_{0}} (1 - \pi_{l}(i))$$

(SCRC) is a multi-objective 0-1 integer programming problem, which is formulated as follows:

$$\min \sum_{j=1}^{n} c_j x_j$$

$$\max \begin{cases} 1 - \prod_{j=1}^{n} (1 - \pi_j(i) x_j) \\ i = 1, 2, ..., m \end{cases}$$

$$s.t. \quad x_j = 0, 1 \quad j = 1, 2, ..., m$$

$$x_j = \begin{cases} 1, & \text{if } P_j \in \mathcal{D}^* \\ 0, & \text{otherwise} \end{cases}$$

where

if
$$x_i \in \{0,1\}$$
, then $1 - \pi_i(i)x = (1 - \pi_i(i))^{x_i}$.

Therefore
$$1 - \prod_{j=1}^{n} (1 - \pi_{j}(i)x_{j}) = 1 - \prod_{j=1}^{n} (1 - \pi_{j}(i))^{x_{j}}$$
.

Then (SCRC) can be formulate as

$$\begin{cases}
\min \sum_{j=1}^{n} c_{j} x_{j} \\
\max \alpha \\
\text{s.t. } 1 - \prod_{j=1}^{n} (1 - \pi_{j}(i))^{x_{j}} \ge \alpha, i = 1, 2, ..., n \\
x_{j} \in \{0, 1\}
\end{cases}$$

Observe that

$$1 - \prod_{j=1}^{n} (1 - \pi_{j}(i))^{x_{j}} \ge \alpha$$

$$1 - \alpha \ge \prod_{j=1}^{n} (1 - \pi_{j}(i))^{x_{j}}$$

$$\ln(1 - \alpha) \ge \sum_{j=1}^{n} x_{i} \ln(1 - \pi_{j}(i))$$

$$- \sum_{j=1}^{n} x_{i} \ln(1 - \pi_{j}(i)) \ge -\ln(1 - \alpha)$$

$$\sum_{j=1}^{n} x_{j} \ln \frac{1}{1 - \pi_{j}(i)} \ge \ln \frac{1}{1 - \alpha}$$

Thus, we obtain the following (SCRC) which is ready for solution.

To "solve" this bi-objective 0-1 linear program problem, we apply the constrain method by controlling α and minimizing the cost. The following is the proposed solution method.

Step 0: Determine
$$\alpha' = \max\{\alpha : \sum \frac{x_j}{\ln(1-\pi_i(i))} \ge \ln \frac{1}{1-\alpha}, x_j \in \{0,1\}\}$$
.

Choose α_* = minimal acceptable level chosen by DM.

Let $\Delta = \frac{\alpha^* - \alpha_*}{k}$, k is a given positive integer.

Step1:

$$\alpha_{1} = \alpha_{*} + \Delta$$

$$\alpha_{2} = \alpha_{1} + \Delta$$

$$\vdots$$

$$\alpha_{k-1} = \alpha_{k-2} + \Delta$$

$$\alpha^{*} = \alpha_{k} = \alpha_{k-1} + \Delta$$

Step 2: For i = 1, 2, ..., k. solve (P_i)

$$(P_{i}) \begin{cases} \min \sum_{j=1}^{n} c_{j} x_{j} \\ s.t. \sum_{j=1}^{n} \frac{x_{j}}{\ln(1 - \pi_{j(i)})} \ge \ln \frac{1}{1 - \alpha_{i}} \\ x_{j} \in \{0, 1\} \end{cases}$$

obtain optimal objective value z_i .

Step3: Analyze $(\alpha_i, z_i^*), i = 1, 2, ..., k$.

Step4: DM choose i, such that (P_i) give the DM an optimal decision.

3. EXAMPLE

Let $I = \{1, 2, 3, 4, 5\}$. Suppose that there are four fuzzy subsets of I, and each is represented as follows: $\tilde{P}_1 = \{(1, 0.4), (2, 0.1), (3, 0.5), (4, 0.7), (5, 0.8)\}$, $\tilde{P}_2 = \{(1, 0.1), (2, 0.3), (3, 0.8), (4, 0.2), (5, 0.6)\}$, $\tilde{P}_3 = \{(1, 0.3), (2, 0.7), (3, 0.2), (4, 0.9), (5, 0.4)\}$, and $\tilde{P}_4 = \{(1, 0.5), (2, 0.9), (3, 0.4), (4, 0.1), (5, 0.2)\}$. Table 1 shows the matrix of $\mu_i(i)$, $i = \{(1, 0.5), (2, 0.9), (3, 0.4), (4, 0.1), (5, 0.2)\}$.

1, 2, ..., 5, j = 1, 2, ..., 4. And we associate each \tilde{P}_j with the corresponding cost c_j , j = 1, 2, ..., 4, shown as table 1.

Table 1. The matrix of $\mu_j(t)$					
	i=1	i=2	i=3	i=4	i = 5
\widetilde{P}_1 (c_1 =4)	0.4	0.1	0.5	0.7	0.8
\widetilde{P}_2 (c_2 =3)	0.1	0.3	0.8	0.2	0.6
\widetilde{P}_3 (c_3 =5)	0.3	0.7	0.2	0.9	0.4
\tilde{P}_4 (c_4 =2)	0.5	0.9	0.4	0.1	0.2

Table 1. The matrix of $\mu_i(i)$

According to the (P1) model, we then have the following mathematical programming:

Min
$$\sum_{j=1}^{n} c_j x_j = 4x_1 + 3x_2 + 5x_3 + 2x_4$$
,
s.t.

$$1 - [(1 - 0.4x_1)(1 - 0.1x_2)(1 - 0.3x_3)(1 - 0.5x_4)] \ge \alpha$$

$$1 - [(1 - 0.1x_1)(1 - 0.3x_2)(1 - 0.7x_3)(1 - 0.9x_4)] \ge \alpha$$

$$1 - [(1 - 0.5x_1)(1 - 0.8x_2)(1 - 0.2x_3)(1 - 0.4x_4)] \ge \alpha$$

$$1 - [(1 - 0.7x_1)(1 - 0.2x_2)(1 - 0.9x_3)(1 - 0.1x_4)] \ge \alpha$$

$$1 - [(1 - 0.8x_1)(1 - 0.6x_2)(1 - 0.4x_3)(1 - 0.2x_4)] \ge \alpha$$

$$x_j \in \{0, 1\}, j = 1, 2, ..., 4.$$

Calculating the inequalities of constraint, we can rewrite the above formulation as P2's form:

Min
$$4x_1 + 3x_2 + 5x_3 + 2x_4$$

s.t. $0.4x_1 + 0.1x_2 + 0.3x_3 + 0.5x_4 - 0.04x_1x_2 - 0.12x_1x_3 - 0.02x_1x_4 - 0.03x_2x_3 - 0.05x_2x_4 - 0.15x_3x_4 + 0.012x_1x_2x_3 + 0.02x_1x_2x_4 + 0.06x_1x_3x_4 + 0.015x_2x_3x_4 - 0.006x_1x_2x_3x_4 \ge \alpha$
 $0.1x_1 + 0.3x_2 + 0.7x_3 + 0.9x_4 - 0.03x_1x_2 - 0.07x_1x_3 - 0.09x_1x_4 - 0.021x_2x_3 - 0.27x_2x_4 - 0.63x_3x_4 + 0.021x_1x_2x_3 + 0.027x_1x_2x_4 + 0.063x_1x_3x_4 + 0.189x_2x_3x_4 - 0.0189x_1x_2x_3x_4 \ge \alpha$
 $0.5x_1 + 0.8x_2 + 0.2x_3 + 0.4x_4 - 0.4x_1x_2 - 0.1x_1x_3 - 0.2x_1x_4 - 0.16x_2x_3 - 0.32x_2x_4 - 0.08x_3x_4 + 0.08x_1x_2x_3 + 0.16x_1x_2x_4 + 0.04x_1x_3x_4 + 0.064x_2x_3x_4 - 0.032x_1x_2x_3x_4 \ge \alpha$

```
\begin{array}{l} 0.7x_1 + 0.2x_2 + 0.9x_3 + 0.1x_4 - 0.14x_1x_2 - 0.63x_1x_3 - 0.07x_1x_4 - 0.18x_2x_3 - 0.02x_2x_4 - 0.09x_3x_4 + 0.126x_1x_2x_3 + 0.014x_1x_2x_4 + 0.063x_1x_3x_4 + 0.018x_2x_3x_4 - 0.0126x_1x_2x_3x_4 \geq \alpha \\ 0.8x_1 + 0.6x_2 + 0.4x_3 + 0.2x_4 - 0.48x_1x_2 - 0.32x_1x_3 - 0.16x_1x_4 - 0.24x_2x_3 - 0.12x_2x_4 - 0.08x_3x_4 + 0.192x_1x_2x_3 + 0.096x_1x_2x_4 + 0.064x_1x_3x_4 + 0.048x_2x_3x_4 - 0.0384x_1x_2x_3x_4 \geq \alpha \\ x_j \in \{0,1\}, j = 1, 2, ..., 4. \end{array}
```

Suppose the desired level $\alpha = 0.5$. Let $y_{j_1 j_2 \cdots j_r} = x_{j_1} \cdot x_{j_2} \cdots x_{j_r}$. For instance, $y_{12} = x_1 x_2$, $y_{123} = x_1 x_2 x_3$, $y_{1234} = x_1 x_2 x_3 x_4$, etc. Then, we obtain the formulation of the form of (P3):

Min $4x_1 + 3x_2 + 5x_3 + 2x_4$ s.t. $0.4x_1 + 0.1x_2 + 0.3x_3 + 0.5x_4 - 0.04y_{12} - 0.12y_{13} - 0.2y_{14} - 0.03y_{23} - 0.05y_{24} - 0.15y_{34} +$ $0.012y_{123} + 0.02y_{124} + 0.06y_{134} + 0.015y_{234} - 0.006y_{1234} \ge 0.5$ $0.1x_1 + 0.3x_2 + 0.7x_3 + 0.9x_4 - 0.03 \ y_{12} - 0.07 \ y_{13} - 0.09 \ y_{14} - 0.021 \ y_{23} - 0.27 \ y_{24} - 0.63$ $y_{34} + 0.021$ $y_{123} + 0.027$ $y_{124} + 0.063$ $y_{134} + 0.189$ $y_{234} - 0.0189$ $y_{1234} \ge 0.5$ $0.5x_1 + 0.8x_2 + 0.2x_3 + 0.4x_4 - 0.4$ $y_{12} - 0.1$ $y_{13} - 0.2$ $y_{14} - 0.16$ $y_{23} - 0.32$ $y_{24} - 0.08$ y_{34} $+0.08 y_{123} + 0.16 y_{124} + 0.04 y_{134} + 0.064 y_{234} - 0.032 y_{1234} \ge 0.5$ $0.7x_1 + 0.2x_2 + 0.9x_3 + 0.1x_4 - 0.14$ $y_{12} - 0.63$ $y_{13} - 0.07$ $y_{14} - 0.18$ $y_{23} - 0.02$ $y_{24} - 0.09$ $y_{34} + 0.126 y_{123} + 0.014 y_{124} + 0.063 y_{134} + 0.018 y_{234} - 0.0126 y_{1234} \ge \alpha$ $0.8x_1 + 0.6x_2 + 0.4x_3 + 0.2x_4 - 0.48$ $y_{12} - 0.32$ $y_{13} - 0.16$ $y_{14} - 0.24$ $y_{23} - 0.12$ $y_{24} - 0.08$ $y_{34} + 0.192 y_{123} + 0.096 y_{124} + 0.064 y_{134} + 0.048 y_{234} - 0.0384 y_{1234} \ge 0.5$ $2y_{12} \le x_1 + x_2 \le 1 + y_{12}$ $2y_{13} \le x_1 + x_3 \le 1 + y_{13}$ $2y_{14} \le x_1 + x_4 \le 1 + y_{14}$ $2y_{23} \le x_2 + x_3 \le 1 + y_{23}$ $2y_{24} \le x_2 + x_4 \le 1 + y_{24}$ $2y_{34} \le x_3 + x_4 \le 1 + y_{34}$ $2y_{123} \le y_{12} + x_3 \le 1 + y_{123}$ $2y_{124} \le y_{12} + x_4 \le 1 + y_{124}$ $2y_{134} \le y_{13} + x_4 \le 1 + y_{134}$ $2y_{234} \le y_{23} + x_4 \le 1 + y_{234}$ $2y_{1234} \le y_{123} + x_4 \le 1 + y_{1234}$ $x_i \in \{0,1\}, j = 1, 2, ..., 4.$

Solving the programming problem by LINGO software, we obtain the optimal solution $x_1^* = 1$, $x_2^* = 0$, $x_3^* = 0$, $x_4^* = 1$, and the total cost is 6.

REFERENCES

- Beasley, J. E. (1987). An Algorithm for Set Covering Problems, European Journal of Operational Research, 31, pp. 85-93.
- Chiang, C. I. (2002). Problem-Oriented Competence Set Analysis and Applications, Dissertation of Institute of Traffic and Transportation, National Chiao Tung University.
- Fisher, M. L., and Kedia, P. (1990). Optimal Solution of the Set Covering/ Partitioning Problems using Dual Heuristics, *Management Science*, 36, pp. 674-688.
- Liu, Y. H. and Tzeng, G. H.. (2003). A Theorem of the Equivalence Between $x_1 \cdot x_2 \cdots x_n$ and A System of Linear Inequalities When $x_1 \cdot x_2 \cdots x_n$ are 0-1 Variables, Working Paper.
- Nemhauser, G. L., and Wolsey, L. A. (1988). Integer and Combinational Optimization, John Wiley & Sons.
- Zimmermann, H. -J. (1991). Fuzzy Set Theory and its Applications, 2nd Edition, Kluwer Academic Publishers, Boston.
- Zimmermann, K. (1991). Fuzzy Set Covering Problem, *International Journal of General System*, **20**, pp. 127-131.
- Zimmermann, K. (1994). On Fuzzy Set Covering Problems, *Fuzzy Optimization*, pp. 272-284, Eds. Delgado, M., Kacprzyk, J., Verdegay, J.-L., and Vila, M. A., Physica-Verlag, Heidelberg.