Abstract
The application of Hadamard matrix to the paral-lel routings on the hypercube network was presented by Rabin. In this matrix every two rows differ from each other by exactly n/2 positions. A set of n disjoint paths on n-dimensional hypercube net-work was designed using this peculiar property of Hadamard ma-trix. Then the data is dispersed into n packets and these n packet are transmitted along these n disjoint paths. In this paper Rabin's routing algorithm is analyzed in terms of covering problem and as-signment problem. Finally we conclude that n packets dispersed are placed in well-distributed positions during transmisson and the ran-domly selected paths are almost a set of n edge-disjoint paths with high probability.