• 제목/요약/키워드: Serviceability

검색결과 906건 처리시간 0.029초

비부착식 진동측정방법에 의한 공용중 교량의 진동사용성에 대한 실험적 평가 (An Experimental Evaluation on Vibration Serviceability of Existing Bridge by Non-contact Vibration Measurement Method)

  • 신현섭;박기태;이규완;전진택
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권6호
    • /
    • pp.254-262
    • /
    • 2010
  • 본 논문에서는 비부착식 진동측정기법에 의한 공용중 교량의 진동사용성을 평가하고자 레이저 진동측정장치를 이용하여 진동사용성 평가 실험을 하였으며, 그 결과를 가속도계 및 처짐계를 사용하여 얻은 결과와 비교 분석하였다. 레이저 진동측정장치의 측정에 대한 정확도는 실교량의 고유진동수를 측정하고, 이를 가속도계로 구한 값과 비교함으로서 검증하였다. 진동사용성 평가 실험 및 비교 분석 결과에 의하면, 측정속도의 수치미분을 통하여 가속도를 추정하고, 가속도 진폭에 대한 Reiher-Meister 진동사용성 평가기준을 이용함으로써 공용중 교량의 진동사용성을 평가할 수 있으며, 추정된 변위 진폭에 대한 경우 측정속도의 시간영역 수치적분 과정에서 발생된 오차로 인해 실제 측정된 변위 진폭에 대한 진동사용성 등급과는 다른 결과를 얻을 수 있음을 알 수 있었다.

진동사용성을 고려한 철도교량구조물의 강성한계 분석 (Estimation of Stiffness Limit for Railway Bridge Vibration Serviceability)

  • 전법규;김남식;김성일
    • 한국철도학회논문집
    • /
    • 제11권5호
    • /
    • pp.489-498
    • /
    • 2008
  • 일반적으로 허용처짐 기준은 정적 사용성과 구조적안전성에 그 기반을 두고 있으며 진동사용성에 대한 고려는 부족하다. 따라서 진동사용성을 고려할 수 있는 교량의 허용처짐 기준이 필요하다고 판단된다. 본 논문에서는, 한국철도교설계기준의 허용처짐기준을 주파수영역의 진동사용성 기준과 비교하였으며, 프랑스 및 일본의 철도교설계기준의 진동사용성 허용기준 또한 분석하였다. 그 결과, 한국철도교설계기준의 경우 열차의 속도에 따른 기준으로 진동지속시간이 부분적으로 고려되었지만 진동사용성은 만족하지 못하고 있는 것으로 판단되었으며, 국외 철도교설계기준비 분석결과, 진동사용성을 고려한 허용처짐기준을 제시할 수 있을 것으로 판단하였다. 공용중인 철도교량의 진동사용성을 평가하기위하여 다양한 형식의 철도교량의 진동신호를 측정하였다. 그리고, 현장에서 적용하기 편리한 진동사용성 처짐 및 강성한계를 제시하기 위하여 공용중인 교량을 대상으로 차량 교량 상호작용해석을 수행하였다.

공용중인 PSC 거더 교량의 진동사용성 평가 (Vibration Serviceability Evaluation of Prestressed Concrete Girder Bridge)

  • 박선준;강성후;김보환;김승
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2009년도 추계학술대회 논문집
    • /
    • pp.781-786
    • /
    • 2009
  • The thesis shows that we gauged vibration of vehicular load regarding WPC girder bridge and researched into dynamic characteristics(natural frequency, vibration acceleration) of WPC girder bridge. By the basic of that, we researched on vibration serviceability by looking over and being compared to vibration criteria we had before. In the thesis, the gauged vibration made an analysis of vertical acceleration through FFT method and evaluated vibration serviceability about vibration sense the body feels by means of the standard of ISO assessment standard and Meister assessment standard by referring to analysis data. This research on bridge is WPC girder bridge of 90m span, width of 5.5m, and the experiment was gauged by a fluent which is right way and inverse way about dump truck of gross 270kN. Acceleration was located in the middle of 1st span, 2nd span, 3rd span. As a result of appraisal standard of Meister, the vibrations of the bridge have distributed between "Level C, Strongly Perceptible" and "Level B, Disturbing". Also the vibration can be attacked with unpleasant feeling. As a result of appraisal standard of ISO, from vibration influence didn't come to 60s, and reduced comfort boundary in part of most rigorous standard that such a case didn't happen.

  • PDF

A comparative study on different walking load models

  • Wang, Jinping;Chen, Jun
    • Structural Engineering and Mechanics
    • /
    • 제63권6호
    • /
    • pp.847-856
    • /
    • 2017
  • Excessive vibrations can occur in long-span structures such as floors or footbridges due to occupant?s daily activity like walking and cause a so-called vibration serviceability issue. Since 1970s, researchers have proposed many human walking load models, and some of them have even been adopted by major design guidelines. Despite their wide applications in structural vibration serviceability problems, differences between these models in predicting structural responses are not clear. This paper collects 19 popular walking load models and compares their effects on structure?s responses when subjected to the human walking loads. Model parameters are first compared among all these models including orders of components, dynamic load factors, phase angles and function forms. The responses of a single-degree-of-freedom system with various natural frequencies to the 19 load models are then calculated and compared in terms of peak values and root mean square values. Case studies on simulated structures and an existing long-span floor are further presented. Comparisons between predicted responses, guideline requirements and field measurements are conducted. All the results demonstrate that the differences among all the models are significant, indicating that in a practical design, choosing a proper walking load model is crucial for the structure?s vibration serviceability assessment.

Experimental study on vibration serviceability of steel-concrete composite floor

  • Cao, Liang;Liu, Jiepeng;Chen, Y. Frank
    • Structural Engineering and Mechanics
    • /
    • 제74권5호
    • /
    • pp.711-722
    • /
    • 2020
  • In this study, on-site testing was carried out to investigate the vibration serviceability of a composite steel-bar truss slab with steel girder system. Impulse excitations (heel-drop and jumping) and steady-state motion (walking and running) were performed to capture the primary vibration parameters (natural frequency and damping ratio) and distribution of peak acceleration. The composite floor possesses low frequency (<8.3Hz) and damping ratio (<2.47%). Based on experimental, theoretical, and numerical analyses on fundamental natural frequency, the boundary condition of SCSS (i.e., three edges simply supported and one edge clamped) is deemed more comparable substitutive for the investigated composite floor. Walking and running excitations by one person (single excitation) were considered to evaluate the vibration serviceability of the composite floor. The measured acceleration results show a satisfactory vibration perceptibility. For design convenience and safety, a crest factor βrp describing the ratio of peak acceleration to root-mean-square acceleration induced from the walking and running excitations is proposed. The comparisons of the modal parameters determined by walking and running tests reveal the interaction effect between the human excitation and the composite floor.

주행 시뮬레이터를 활용한 운전자 중심의 교량 진동 사용성 평가기준 연구 (A Study on Assessment of Vibration Serviceability of Highway Bridges Using Driving Simulator)

  • 오정재;박종섭;성익현
    • 한국산학기술학회논문지
    • /
    • 제11권5호
    • /
    • pp.1778-1784
    • /
    • 2010
  • 본 연구는 기존의 진동 처짐에 대한 교량 사용성 평가기준 연구 내용을 바탕으로 최첨단 모의운전 차량실험기(Advanced Driving Simulator)를 이용하여 운전자가 교량 주행 시 진동으로 인해 느끼는 주행안락도를 평가하는 기준을 제안하였다. 열차승객을 대상으로 하는 Reiher-Meister Curve의 적용성을 파악하고 교량 계측결과와 구조해석 결과를 토대로 수정 Reiher-Meister Curve 제안하였다. 교량운전자 중심의 사용성 평가를 위한 수정 Reiher-Meister Curve는 A에서 D까지 4등급으로 규정되었다. 새로운 진동감각곡선은 교량 사용자 중심의 교량 설계 및 유지관리분야에 널리 사용될 수 있을 것이다.

공용중인 PSC 거더 교량의 진동사용성 평가 (Vibration Serviceability Evaluation of Prestressed Concrete Girder Bridge)

  • 강성후;김보환;박선준;김승
    • 한국소음진동공학회논문집
    • /
    • 제20권4호
    • /
    • pp.331-337
    • /
    • 2010
  • The thesis shows that we gauged vibration of vehicular load regarding WPC girder bridge and researched into dynamic characteristics(natural frequency, vibration acceleration) of WPC girder bridge. By the basic of that, we researched on vibration serviceability by looking over and being compared to vibration criteria we had before. In the thesis, the gauged vibration made an analysis of vertical acceleration through FFT method and evaluated vibration serviceability about vibration sense the body feels by means of the standard of ISO assessment standard and Meister assessment standard by referring to analysis data. This research on bridge is WPC girder bridge of 90 m span, width of 5.5 m, and the experiment was gauged by a fluent which is right way and inverse way about dump truck of gross 270 kN. Acceleration was located in the middle of 1st span, 2nd span, 3rd span. As a result of appraisal standard of Meister, the vibrations of the bridge have distributed between "level C, strongly perceptible" and "level B, disturbing". Also the vibration can be attacked with unpleasant feeling. As a result of appraisal standard of ISO, from vibration influence didn't come to 60s, and reduced comfort boundary in part of most rigorous standard that such a case didn't happen.

Predictive models of ultimate and serviceability performances for underground twin caverns

  • Zhang, Wengang;Goh, Anthony T.C.
    • Geomechanics and Engineering
    • /
    • 제10권2호
    • /
    • pp.175-188
    • /
    • 2016
  • The construction of a new cavern modifies the state of stresses and displacements in a zone around the existing cavern. For multiple caverns, the size of this influence zone depends on the ground type, the in situ stress, the cavern span and shape, the width of the pillar separating the caverns, and the excavation sequence. Performances of underground twin caverns can be unsatisfactory as a result of either instability (collapse) or excessive displacements. These two distinct failures should be prevented in design. This study simulated the ultimate and serviceability performances of underground twin rock caverns of various sizes and shapes. The global factor of safety is used as the criterion for determining the ultimate limit state and the calculated maximum displacement around the cavern opening is adopted as the serviceability limit state criterion. Based on the results of a series of numerical simulations, simple regression models were developed for estimating the global factor of safety and the maximum displacement, respectively. It was proposed that a proper pillar width can be determined based on the threshold influence factor value. In addition, design charts with regard to the selection of the pillar width for underground twin rock caverns under similar ground conditions were also developed.

리브 형상을 갖는 반단면 프리캐스트 판넬의 휨 안전성 평가 연구 (Study on Safety Evaluation of the Half-Depth Precast Deck with RC Rib Pannel for the Flexural Behavior)

  • 황훈희
    • 한국안전학회지
    • /
    • 제34권4호
    • /
    • pp.76-84
    • /
    • 2019
  • The precast pannels are used as formwork in Half-depth precast deck systems. Therefore, it has many advantages, including safe and convenient construction and reduced construction period compared to cast-in-place construction method. In half-depth precast deck systems, the bonding of precast pannels to cast-in place concrete is very important. To enhance the performance of half-depth precast deck system, it is necessary to improve the composite efficiency of the interface or increase the stiffness of the precast pannel to reduce deformation or stress on the interface. In this study, a flexural test of half-depth precast deck system was performed, in which the shear connecting reinforcement was applied to increase the bonding performance at the interface, and the rib shape precast panels were applied to improve stiffness. In addition, the safety and serviceability of these systems were evaluated. Test results show that all of specimens have the required flexural strength under the ultimate strength limit design. It was also evaluated to have sufficient safety for the serviceability of deflection and crack under the serviceability limit design.

Occupant comfort evaluation and wind-induced serviceability design optimization of tall buildings

  • Huang, M.F.;Chan, C.M.;Kwok, Kenny C.S.
    • Wind and Structures
    • /
    • 제14권6호
    • /
    • pp.559-582
    • /
    • 2011
  • This paper presents an integrated wind-induced dynamic analysis and computer-based design optimization technique for minimizing the structural cost of general tall buildings subject to static and dynamic serviceability design criteria. Once the wind-induced dynamic response of a tall building structure is accurately determined and the optimal serviceability design problem is explicitly formulated, a rigorously derived Optimality Criteria (OC) method is to be developed to achieve the optimal distribution of element stiffness of the structural system satisfying the wind-induced drift and acceleration design constraints. The effectiveness and practicality of the optimal design technique are illustrated by a full-scale 60-story building with complex 3D mode shapes. Both peak resultant acceleration criteria and frequency dependent modal acceleration criteria are considered and their influences on the optimization results are highlighted. Results have shown that the use of various acceleration criteria has different implications in the habitability evaluations and subsequently different optimal design solutions. The computer based optimization technique provides a powerful tool for the lateral drift and occupant comfort design of tall building structures.