• Title/Summary/Keyword: Service Failure

Search Result 1,165, Processing Time 0.026 seconds

Design and Implementation of an Ethereum-Based Deliverables Management System for Public Information Software Project (이더리움 기반 공공정보 소프트웨어 사업산출물 관리 시스템 설계 및 구현)

  • Lee, Eun Ju;Kim, Jin Wook
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.11 no.6
    • /
    • pp.175-184
    • /
    • 2022
  • Blockchain is being studied in various fields such as logistics, fintech, medical care, and the public sector. In the public information software project, some deliverables are omitted because the developed deliverables and the deliverables requested by the project management methodology do not match, and an additional process is required for payment. In this paper, we propose the deliverables management system for public information software project which is configured a distributed environment using the Ethereum blockchain and which has an automatic payment system only when all deliverables are approved. This system can keep the service available in case of system failure, provide transparency and traceability of deliverables management, and can reduce conflicts between the ordering company and the contractor through automatic payment. In this system, the information of deliverables is stored in the blockchain, and the deliverables that their file name is the hash value calculated by using the version information and the hash value of the previous version deliverable, are stored in the SFTP server. Experimental results show that the hash value of the deliverables registered by the contractor is correct, the file name of the deliverables stored in the SFTP server is the same as the hash value registered in the Ethereum blockchain, and the payment is made automatically to the Ethereum address of the contractor when all deliverables are approved.

Evaluation of Data-based Expansion Joint-gap for Digital Maintenance (디지털 유지관리를 위한 데이터 기반 교량 신축이음 유간 평가 )

  • Jongho Park;Yooseong Shin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.28 no.2
    • /
    • pp.1-8
    • /
    • 2024
  • The expansion joint is installed to offset the expansion of the superstructure and must ensure sufficient gap during its service life. In detailed guideline of safety inspection and precise safety diagnosis for bridge, damage due to lack or excessive gap is specified, but there are insufficient standards for determining the abnormal behavior of superstructures. In this study, a data-based maintenance was proposed by continuously monitoring the expansion-gap data of the same expansion joint. A total of 2,756 data were collected from 689 expansion joint, taking into account the effects of season. We have developed a method to evaluate changes in the expansion joint-gap that can analyze the thermal movement through four or more data at the same location, and classified the factors that affect the superstructure behavior and analyze the influence of each factor through deep learning and explainable artificial intelligence(AI). Abnormal behavior of the superstructure was classified into narrowing and functional failure through the expansion joint-gap evaluation graph. The influence factor analysis using deep learning and explainable AI is considered to be reliable because the results can be explained by the existing expansion gap calculation formula and bridge design.

Evaluation method for interoperability of weapon systems applying natural language processing techniques (자연어처리 기법을 적용한 무기체계의 상호운용성 평가방법)

  • Yong-Gyun Kim;Dong-Hyen Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.3
    • /
    • pp.8-17
    • /
    • 2023
  • The current weapon system is operated as a complex weapon system with various standards and protocols applied, so there is a risk of failure in smooth information exchange during combined and joint operations on the battlefield. The interoperability of weapon systems to carry out precise strikes on key targets through rapid situational judgment between weapon systems is a key element in the conduct of war. Since the Korean military went into service, there has been a need to change the configuration and improve performance of a large number of software and hardware, but there is no verification system for the impact on interoperability, and there are no related test tools and facilities. In addition, during combined and joint training, errors frequently occur during use after arbitrarily changing the detailed operation method and software of the weapon/power support system. Therefore, periodic verification of interoperability between weapon systems is necessary. To solve this problem, rather than having people schedule an evaluation period and conduct the evaluation once, AI should continuously evaluate the interoperability between weapons and power support systems 24 hours a day to advance warfighting capabilities. To solve these problems, To this end, preliminary research was conducted to improve defense interoperability capabilities by applying natural language processing techniques (①Word2Vec model, ②FastText model, ③Swivel model) (using published algorithms and source code). Based on the results of this experiment, we would like to present a methodology (automated evaluation of interoperability requirements evaluation / level measurement through natural language processing model) to implement an automated defense interoperability evaluation tool without relying on humans.

  • PDF

Mechanical ventilation in patients with idiopathic pulmonary fibrosis in Korea: a nationwide cohort study

  • Jae Kyeom Sim;Seok Joo Moon;Juwhan Choi;Jee Youn Oh;Young Seok Lee;Kyung Hoon Min;Gyu Young Hur;Sung Yong Lee;Jae Jeong Shim
    • The Korean journal of internal medicine
    • /
    • v.39 no.2
    • /
    • pp.295-305
    • /
    • 2024
  • Background/Aims: The prognosis of patients with idiopathic pulmonary fibrosis (IPF) and respiratory failure requiring mechanical ventilation is poor. Therefore, mechanical ventilation is not recommended. Recently, outcomes of mechanical ventilation, including those for patients with IPF, have improved. The aim of this study was to investigate changes in the use of mechanical ventilation in patients with IPF and their outcomes over time. Methods: This retrospective, observational cohort study used data from the National Health Insurance Service database. Patients diagnosed with IPF between January 2011 and December 2019 who were placed on mechanical ventilation were included. We analyzed changes in the use of mechanical ventilation in patients with IPF and their mortality using the Cochran-Armitage trend test. Results: Between 2011 and 2019, 1,227 patients with IPF were placed on mechanical ventilation. The annual number of patients with IPF with and without mechanical ventilation increased over time. However, the ratio was relatively stable at approximately 3.5%. The overall hospital mortality rate was 69.4%. There was no improvement in annual hospital mortality rate. The overall 30-day mortality rate was 68.7%, which did not change significantly. The overall 90-day mortality rate was 85.3%. The annual 90-day mortality rate was decreased from 90.9% in 2011 to 83.1% in 2019 (p = 0.028). Conclusions: Despite improvements in intensive care and ventilator management, the prognosis of patients with IPF receiving mechanical ventilation has not improved significantly.

Relationship between Innovation Performance and R&D Investment: The Mediating Role of Entrepreneurial Orientation (과거 혁신성과와 R&D 투자 간의 관계와 기업가 지향성의 매개효과에 대한 연구)

  • Han, Su-Kyeong;Yoo, Jae-Wook;Kim, Choo-Yeon
    • Management & Information Systems Review
    • /
    • v.36 no.3
    • /
    • pp.219-237
    • /
    • 2017
  • Looking into the top-five innovative sectors in Korea's manufacturing and service industries, this study empirically analyzes the effect of innovation performance on R&D investment, which is one of the most important strategic decisions for corporate management. In the midst of an uncertain business environment, R&D investment has been regarded as the most important strategic decision making in corporate management related to innovation. Corporate management, however, tend to be reluctant to make sufficient R&D investment due to the risk of an investment failure. Therefore, having R&D investment by offsetting this risk has been deemed as a key task for corporate management. However, prior studies have failed to identify which factors affect companies' strategic decision making on R&D investment. This study is to remedy this weakness of prior study. Relying on path dependency theory at organization-level and dominant logic at individual-level, this study empirically examines the multiple regression model, which sees entrepreneurial orientation as a positive mediator between innovation performance and R&D investment. The results found in the analysis of 242 local companies in the manufacturing and service sectors represent that innovation performance has a direct and positive effect on R&D investment, while it indirectly affects R&D investment through the mediating roles of entrepreneurial orientation. They also revealed that innovation performance had a meaningful impact on entrepreneurial orientation, which is an inclination to seek innovation, led to R&D investment. The founding of this study imply that innovation performance in the past affects innovation strategies in the future, and such a relationship could be strengthened by entrepreneurial orientation as the dominant logic of corporate management.

  • PDF

Empirical Analysis of Accelerator Investment Determinants Based on Business Model Innovation Framework (비즈니스 모델 혁신 프레임워크 기반의 액셀러레이터 투자결정요인 실증 분석)

  • Jung, Mun-Su;Kim, Eun-Hee
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.1
    • /
    • pp.253-270
    • /
    • 2023
  • Research on investment determinants of accelerators, which are attracting attention by greatly improving the survival rate of startups by providing professional incubation and investment to startups at the same time, is gradually expanding. However, previous studies do not have a theoretical basis in developing investment determinants in the early stages, and they use factors of angel investors or venture capital, which are similar investors, and are still in the stage of analyzing importance and priority through empirical research. Therefore, this study verified for the first time in Korea the discrimination and effectiveness of investment determinants using accelerator investment determinants developed based on the business model innovation framework in previous studies. To this end, we first set the criteria for success and failure of startup investment based on scale-up theory and conducted a survey of 22 investment experts from 14 accelerators in Korea, and secured valid data on a total of 97 startups, including 52 successful scale-up startups and 45 failed scale-up startups, were obtained and an independent sample t-test was conducted to verify the mean difference between these two groups by accelerator investment determinants. As a result of the analysis, it was confirmed that the investment determinants of accelerators based on business model innovation framework have considerable discrimination in finding successful startups and making investment decisions. In addition, as a result of analyzing manufacturing-related startups and service-related startups considering the characteristics of innovation by industry, manufacturing-related startups differed in business model, strategy, and dynamic capability factors, while service-related startups differed in dynamic capabilities. This study has great academic implications in that it verified the practical effectiveness of accelerator investment determinants derived based on business model innovation framework for the first time in Korea, and it has high practical value in that it can make effective investments by providing theoretical grounds and detailed information for investment decisions.

  • PDF

Deriving adoption strategies of deep learning open source framework through case studies (딥러닝 오픈소스 프레임워크의 사례연구를 통한 도입 전략 도출)

  • Choi, Eunjoo;Lee, Junyeong;Han, Ingoo
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.27-65
    • /
    • 2020
  • Many companies on information and communication technology make public their own developed AI technology, for example, Google's TensorFlow, Facebook's PyTorch, Microsoft's CNTK. By releasing deep learning open source software to the public, the relationship with the developer community and the artificial intelligence (AI) ecosystem can be strengthened, and users can perform experiment, implementation and improvement of it. Accordingly, the field of machine learning is growing rapidly, and developers are using and reproducing various learning algorithms in each field. Although various analysis of open source software has been made, there is a lack of studies to help develop or use deep learning open source software in the industry. This study thus attempts to derive a strategy for adopting the framework through case studies of a deep learning open source framework. Based on the technology-organization-environment (TOE) framework and literature review related to the adoption of open source software, we employed the case study framework that includes technological factors as perceived relative advantage, perceived compatibility, perceived complexity, and perceived trialability, organizational factors as management support and knowledge & expertise, and environmental factors as availability of technology skills and services, and platform long term viability. We conducted a case study analysis of three companies' adoption cases (two cases of success and one case of failure) and revealed that seven out of eight TOE factors and several factors regarding company, team and resource are significant for the adoption of deep learning open source framework. By organizing the case study analysis results, we provided five important success factors for adopting deep learning framework: the knowledge and expertise of developers in the team, hardware (GPU) environment, data enterprise cooperation system, deep learning framework platform, deep learning framework work tool service. In order for an organization to successfully adopt a deep learning open source framework, at the stage of using the framework, first, the hardware (GPU) environment for AI R&D group must support the knowledge and expertise of the developers in the team. Second, it is necessary to support the use of deep learning frameworks by research developers through collecting and managing data inside and outside the company with a data enterprise cooperation system. Third, deep learning research expertise must be supplemented through cooperation with researchers from academic institutions such as universities and research institutes. Satisfying three procedures in the stage of using the deep learning framework, companies will increase the number of deep learning research developers, the ability to use the deep learning framework, and the support of GPU resource. In the proliferation stage of the deep learning framework, fourth, a company makes the deep learning framework platform that improves the research efficiency and effectiveness of the developers, for example, the optimization of the hardware (GPU) environment automatically. Fifth, the deep learning framework tool service team complements the developers' expertise through sharing the information of the external deep learning open source framework community to the in-house community and activating developer retraining and seminars. To implement the identified five success factors, a step-by-step enterprise procedure for adoption of the deep learning framework was proposed: defining the project problem, confirming whether the deep learning methodology is the right method, confirming whether the deep learning framework is the right tool, using the deep learning framework by the enterprise, spreading the framework of the enterprise. The first three steps (i.e. defining the project problem, confirming whether the deep learning methodology is the right method, and confirming whether the deep learning framework is the right tool) are pre-considerations to adopt a deep learning open source framework. After the three pre-considerations steps are clear, next two steps (i.e. using the deep learning framework by the enterprise and spreading the framework of the enterprise) can be processed. In the fourth step, the knowledge and expertise of developers in the team are important in addition to hardware (GPU) environment and data enterprise cooperation system. In final step, five important factors are realized for a successful adoption of the deep learning open source framework. This study provides strategic implications for companies adopting or using deep learning framework according to the needs of each industry and business.

Target-Aspect-Sentiment Joint Detection with CNN Auxiliary Loss for Aspect-Based Sentiment Analysis (CNN 보조 손실을 이용한 차원 기반 감성 분석)

  • Jeon, Min Jin;Hwang, Ji Won;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.4
    • /
    • pp.1-22
    • /
    • 2021
  • Aspect Based Sentiment Analysis (ABSA), which analyzes sentiment based on aspects that appear in the text, is drawing attention because it can be used in various business industries. ABSA is a study that analyzes sentiment by aspects for multiple aspects that a text has. It is being studied in various forms depending on the purpose, such as analyzing all targets or just aspects and sentiments. Here, the aspect refers to the property of a target, and the target refers to the text that causes the sentiment. For example, for restaurant reviews, you could set the aspect into food taste, food price, quality of service, mood of the restaurant, etc. Also, if there is a review that says, "The pasta was delicious, but the salad was not," the words "steak" and "salad," which are directly mentioned in the sentence, become the "target." So far, in ABSA, most studies have analyzed sentiment only based on aspects or targets. However, even with the same aspects or targets, sentiment analysis may be inaccurate. Instances would be when aspects or sentiment are divided or when sentiment exists without a target. For example, sentences like, "Pizza and the salad were good, but the steak was disappointing." Although the aspect of this sentence is limited to "food," conflicting sentiments coexist. In addition, in the case of sentences such as "Shrimp was delicious, but the price was extravagant," although the target here is "shrimp," there are opposite sentiments coexisting that are dependent on the aspect. Finally, in sentences like "The food arrived too late and is cold now." there is no target (NULL), but it transmits a negative sentiment toward the aspect "service." Like this, failure to consider both aspects and targets - when sentiment or aspect is divided or when sentiment exists without a target - creates a dual dependency problem. To address this problem, this research analyzes sentiment by considering both aspects and targets (Target-Aspect-Sentiment Detection, hereby TASD). This study detected the limitations of existing research in the field of TASD: local contexts are not fully captured, and the number of epochs and batch size dramatically lowers the F1-score. The current model excels in spotting overall context and relations between each word. However, it struggles with phrases in the local context and is relatively slow when learning. Therefore, this study tries to improve the model's performance. To achieve the objective of this research, we additionally used auxiliary loss in aspect-sentiment classification by constructing CNN(Convolutional Neural Network) layers parallel to existing models. If existing models have analyzed aspect-sentiment through BERT encoding, Pooler, and Linear layers, this research added CNN layer-adaptive average pooling to existing models, and learning was progressed by adding additional loss values for aspect-sentiment to existing loss. In other words, when learning, the auxiliary loss, computed through CNN layers, allowed the local context to be captured more fitted. After learning, the model is designed to do aspect-sentiment analysis through the existing method. To evaluate the performance of this model, two datasets, SemEval-2015 task 12 and SemEval-2016 task 5, were used and the f1-score increased compared to the existing models. When the batch was 8 and epoch was 5, the difference was largest between the F1-score of existing models and this study with 29 and 45, respectively. Even when batch and epoch were adjusted, the F1-scores were higher than the existing models. It can be said that even when the batch and epoch numbers were small, they can be learned effectively compared to the existing models. Therefore, it can be useful in situations where resources are limited. Through this study, aspect-based sentiments can be more accurately analyzed. Through various uses in business, such as development or establishing marketing strategies, both consumers and sellers will be able to make efficient decisions. In addition, it is believed that the model can be fully learned and utilized by small businesses, those that do not have much data, given that they use a pre-training model and recorded a relatively high F1-score even with limited resources.

The Effects of Switching-Frustrated Situation on Negative Psychological Response (전환 좌절상황에서 소비자의 부정적 심리반응에 관한 연구)

  • Jeong, Yun Hee
    • Asia Marketing Journal
    • /
    • v.14 no.1
    • /
    • pp.131-157
    • /
    • 2012
  • Despite the voluminous research on switching barriers, the notion that they can generate negative responses has not been investigated. Further, a critical question is what determines the strength of such negative responses. To address this question, the classic theory of psychological reactance is briefly reviewed, and the idea of switching barrier is advanced. This study attempts to suggest a model on the negative effects of switching- frustrated situation, based on the studies on psychological reactance. According to psychological reactance theory(Brehm 1966), whenever a freedom is threatened or removed, individuals are motivated, at least temporarily, to restore their freedom. For example, if individuals think they are free to engage in behaviors .v, y, or z, then threatening their freedom to engage in x would cause psychological reactance. This reactance could be reduced by an increase in the perceived attractiveness of engaging in, the threatened behavior(Kivetz 2005). This investigation seeks to extend existing switching barrier research in three important ways. First, while the past research has emphasized only positive role of switching barrier, this study address negative role of it by applying psychological reactance theory. Second, to find negative results of switching barrier, I suggest negative psychological response including regret to the past choice, resentment to the present provider, and strong desire to the alternative provider. Third, I suggest the perceived severity of the switching barriers, the attractiveness of the alternative as switching-frustrated situation which can lead to negative results. And, in addition to these relationships, I added moderated effects of perceived justice for better explanation. So this study includes the following hypotheses. H1-1 ~ H1-3: The attractiveness of the alternative has a positive effect regret to the past choice (h1-1), resentment to the present provider (h1-2), and strong desire to the alternative provider (h1-3). H2-1 ~ H2-3 : The perceived severity of the switching barrier has a positive effect regret to the past choice (h2-1), resentment to the present provider (h2-2), and strong desire to the alternative provider (h2-3). H3-1 ~ H3-3 : The positive relationships between the attractiveness of the alternative and consumer' negative responses will be stronger at low level of perceived justice than at high level of perceived justice. H4-1 ~ H4-3 : The positive relationships between the perceived severity of the switching barrier and consumer' negative responses will be stronger at low level of perceived justice than at high level of perceived justice. Survey research is employed to test hypotheses involving perceived severity of the switching barrier(Hess 2008), attractiveness of the alternative(Anderson and Narus 1990; Ohanian 1990),regret(Glovich and Medvec 1995), resentment, strong desire(Alcohol Urge Questionaire: Bohn et al. 1995), perceived justice(Bies and Moag 1986; Clemmer 1993; Lind and Tyler 1998). Previous researches, such as reactance theory, emotion and service failure, have been referenced to measure constructs. All items were measured on a 7-point Likert scale ranging from "strongly disagree" to "strongly agree". We collected data involving various service field, and used 249 respondents to analyze these data using the moderated regression. The results of our analysis suggest, as expected, that the perceived severity of the switching barrier had positive effects on regret to the past choice(b = .197, p< .01), resentment to the present provider(b = .214, p< .01), and strong desire to the alternative provider(b = .254, p< .001). And the attractiveness of the alternative had positive effects on regret to the past choice(b = .353, p<.001), resentment to the present provider(b = .174, p< .01), and strong desire to the alternative provider(b = .265, p< .001). However, our findings indicate perceived justice partly moderates relationship between switching-frustrated situation and psychological negative response. The study has brought to light a number of insights between switching barriers and consumer' negative responses that have been subject to little prior research. In particular, this study adds to the existing understanding of the psychological responses to switching barriers in switching- frustrated situation. This research therefore has significance to marketers for strategic marketing programs, particularly in terms of customer retention and switching barrier strategies. Since consumers could exhibit negative responses to switching barrier, companies would be able to lose their customer when they thoughtlessly use switching barrier for remaining customer. Although the study has these contributions, there are several limitations including unsupported hypotheses and research method. So, we need to make up for these limitations in the future researches.

  • PDF

Effect of water storage on the fracture toughness of dental resin cement used for zirconia restoration (수분이 지르코니아 수복물 전용 레진시멘트의 파괴인성에 미치는 영향에 관한 연구)

  • Goo, Bon-Wook;Kim, Sung-Hun;Lee, Jai-Bong;Han, Jung-Suk;Yeo, In-Sung;Ha, Seung-Ryong;Kim, Hee-Kyung
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.52 no.4
    • /
    • pp.312-316
    • /
    • 2014
  • Purpose: The aim of this study was to compare the fracture toughness of currently available resin cements for zirconia restorations and evaluate the effect of water storage on fracture toughness of those resin cements. Materials and methods: Single-edge notched specimens ($3mm{\times}6mm{\times}25mm$) were prepared from three currently available dual cure resin cements for zirconia restorations (Panavia F 2.0, Clearfil SA luting and Zirconite). Each resin cement was divided into four groups: immersed in distilled water at $37^{\circ}C$ for 1 (Control group), 30, 90, or 180 days (n=5). Specimens were loaded in three point bending at a cross-head speed of 0.1 mm/s. The maximum load at specimen failure was recorded and the fracture toughness ($K_{IC}$) was calculated. Data were analyzed using one-way ANOVA and multiple comparison $Scheff{\acute{e}}$ test (${\alpha}$=.05). Results: In control group, the mean $K_{IC}$ was $3.41{\pm}0.64MN{\cdot}m^{-1.5}$ for Panavia F, 2.0, $3.07{\pm}0.41MN{\cdot}m^{-1.5}$ for Zirconite, $2.58{\pm}0.30MN{\cdot}m^{-1.5}$ for Clearfil SA luting respectively, but statistical analysis revealed no significant difference between them. Although a gradual decrease of $K_{IC}$ in Panavia F 2.0 and gradual increases of KIC in Clearfil SA luting and Zirconite were observed with storage time, there were no significant differences between immersion time for each cement. Conclusion: The resin cements for zirconia restorations exhibit much higher $K_{IC}$ values than conventional resin cements. The fracture toughness of resin cement for zirconia restoration would not be affected by water storage.