• Title/Summary/Keyword: Service Climate

Search Result 464, Processing Time 0.026 seconds

A Study on Influential Factors to the Career Maturity and Entrepreneurial Intention in Youth Entrepreneurship Education (청소년의 진로성숙도와 창업의도에 미치는 영향 연구)

  • Lee, Hye-Jin;Hwang, In-Ho;Kim, Jin-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.4
    • /
    • pp.698-709
    • /
    • 2016
  • Career maturity and the acquisition of entrepreneurial knowledge are important in entrepreneurship education for youth, and the environments surrounding youths influence their mental state and academic achievement. This study aims to analyze the influences of an educational program and environment in entrepreneurship education for youths on the mindset and the entrepreneurial intention for proper career decisions according to the education climate and entrepreneurial knowledge. A total of 216 questionnaires were collected from students who participated in a creative and entrepreneurial tour of Incheon. After excluding 30 questionnaires with unreliable responses, 186 were empirically analyzed using SPSS 18.0 and Amos 18.0. The results show that the quality of education service and education environment decide the education climate, and the entrepreneurial knowledge has a positive influence on entrepreneurial intention. This research is significant because it strategically establishes directions for entrepreneurial education and as practical research for achieving outcomes of entrepreneurial education.

Factors Influencing Compliance on the Use of Personal Protective Equipment during Cleaning of Medical Device Reprocessing Staffs (의료기기 재처리 세척 직원의 개인보호구 착용 이행의 영향요인)

  • Park, Hyun Hee;Hong, Jung Hwa;Jeong, Gye Seon;Lee, Kwang Ok
    • Journal of muscle and joint health
    • /
    • v.31 no.1
    • /
    • pp.42-52
    • /
    • 2024
  • Purpose: This study aimed to identify the factors affecting compliance with personal protective equipment (PPE) use among medical device reprocessing staff. Methods: This descriptive cross-sectional study included 163 cleaning staff members from ten general hospitals in Seoul and Gyeonggi. Data were collected using self-report questionnaires administered between July and September 2023. Analysis included t-tests, ANOVA, Pearson's correlation coefficient, Bonferroni correction, and multiple regression, conducted using SAS ver.9.4. Results: Statistically significant differences in compliance with PPE were found based on department and exposure to contamination within six months (t=-2.82, p=.007). Attitudes toward PPE (r=.22, p=.006) and awareness of the safety climate (r=.22, p=.006) showed a statistically significant positive correlation with PPE compliance. Factors influencing use of personal protective equipment by cleaning staff during medical device reprocessing were department, compliance with PPE, and awareness of the safety climate. The explanatory power of these factors was 58.0%. Conclusion: Improving PPE compliance and creating a safe cleaning environment entails fostering a supportive safety climate. Additionally, regular training that takes into consideration the characteristics of the cleaning staff, alongside continuous monitoring, is required.

Improvement Method of Regional Insulation Standard through the Regional Heating Energy Demand Analysis (권역별 난방에너지 요구량 분석을 통한 단열기준 개선방안)

  • Kim, Jeong-Gook;Ahn, Byung-Lip;Jang, Cheol-Yong;Jeong, Hak-Geun;Haan, Chan-Hoon
    • KIEAE Journal
    • /
    • v.13 no.4
    • /
    • pp.43-48
    • /
    • 2013
  • The effect of climate change has influenced humanity and ecosystem with tremendous changes in temperature. For the past 150 years, the national annual average temperature is 0.6 degree increased and the heating degree day reduced from April to November. However, December to January, the climate change was generated and the heating degree day increased. The blackout occured in 2011 and 2012 by increasing electricity consumption of heating and cooling equipment to the effects of climate change. That is because heating load accounted for 20% of building electric use. In this study, strengthening measures to reduce heating energy consumption is presented due to climate change in winter since 1980 to prevent blackout and reliable power supply for the building energy-saving design standards by Meteorological data provided by the National Weather Service were calculated using the heating degree days in order to present eighteen cities from 1980 to 2012. Insulation standards are presented to prevent black-out by the heating degree days. the heating energy demand was reduced almost 6% including 10% in Central, 5% in South and Jeju area based on strengthening of the insulation. It is applied to the entire country an annual economic effect of 250 billion won, and black-out can be prevented.

The Relationship between Work-Family Conflict and Individual Engagement: Moderating Effect of Perceived Wellness Climate (일(가정)-가정(일)갈등과 개인몰입 간의 관계: 지각된 조직 건강지원 분위기의 조절효과)

  • Wang, Dong;Cha, Yunsuk;Nam, Yoonsung
    • The Journal of the Korea Contents Association
    • /
    • v.16 no.1
    • /
    • pp.568-577
    • /
    • 2016
  • The purpose of this study is to verify the moderating effect of perceived wellness climate in the relationship where work-family conflict influences individual engagement. For this, survey was executed on employees of 11 companies including IT, service, manufacturing and etc. After the survey was executed, statistical analysis was executed. This study executed validity test, credibility test, and Hierarchical Linear Regression. The analysis result is as follows. First, work-family (family-work) conflict gives negative (-) influence on individual engagement. Second, perceived wellness climate was marginally significant in the relationship between work-family conflict and individual engagement. And the control effect of perceived wellness climate in the relationship between family-work conflict and individual engagement was significant according to statistics. The conclusion states the implications and limitations of this study, and suggests directions on future studies.

Predicting the Design Rainfall for Target Years and Flood Safety Changes by City Type using Non-Stationary Frequency Analysis and Climate Change Scenario (기후변화시나리오와 비정상성 빈도분석을 이용한 도시유형별 목표연도 설계강우량 제시 및 치수안전도 변화 전망)

  • Jeung, Se-Jin;Kang, Dong-Ho;Kim, Byung-Sik
    • Journal of Environmental Science International
    • /
    • v.29 no.9
    • /
    • pp.871-883
    • /
    • 2020
  • Due to recent heavy rain events, there are increasing demands for adapting infrastructure design, including drainage facilities in urban basins. Therefore, a clear definition of urban rainfall must be provided; however, currently, such a definition is unavailable. In this study, urban rainfall is defined as a rainfall event that has the potential to cause water-related disasters such as floods and landslides in urban areas. Moreover, based on design rainfall, these disasters are defined as those that causes excess design flooding due to certain rainfall events. These heavy rain scenarios require that the design of various urban rainfall facilities consider design rainfall in the target years of their life cycle, for disaster prevention. The average frequency of heavy rain in each region, inland and coastal areas, was analyzed through a frequency analysis of the highest annual rainfall in the past year. The potential change in future rainfall intensity changes the service level of the infrastructure related to hand-to-hand construction; therefore, the target year and design rainfall considering the climate change premium were presented. Finally, the change in dimensional safety according to the RCP8.5 climate change scenario was predicted.

Evaluation of near-realtime weekly root-zone Soil Moisture Index (SMI) for the extreme climate monitoring web-service across East Asia (동아시아 이상기후 감시 서비스를 위한 지면모형 기반 준실시간 토양수분지수평가)

  • Chun, Jong Ahn;Lee, Eunjeong;Kim, Daeha;Kim, Seon Tae;Lee, Woo-Seop
    • Journal of Korea Water Resources Association
    • /
    • v.53 no.6
    • /
    • pp.409-416
    • /
    • 2020
  • An extreme climate monitoring is essential to the reduction of socioeconomic damages from extreme events. The objective of this study was to produce the near-realtime weekly root-zone Soil Moisture Index (SMI) on the basis of soil moisture using the Noah 3.3 Land Surface Model (LSM) for potentially monitoring extreme drought events. The Yangtze basin was selected to evaluate the Noah LSM performance for the East Asia region (15-60°N, 70-150°E) and the evapotranspiration (ET) and sensible heat flux (SH) were compared with ET and SH from FluxNet and with ET from FluxCom, Global Land Evaporation Amsterdam Model (GLEAM), ERA-5, and Generalized Complementary Relationship (GCR). For the ET, the coefficients of determination (R2) were higher than 0.96, while the R2 value for the SH was 0.71 with slightly lower than those. A time series of the weekly root-zone SMI revealed that the regions with Extreme drought had been expanded from the northern part of East China to the entire East China between July to October 2019. The trend analysis of the number of extreme drought events showed that extreme drought events in spring had reduced in South Korea over the past 20 years, while those in fall had a tendency to increase. It is concluded that this study can be useful to reduce the socioeconomic damages resulted from climate extremes by comprehensively characterizing extreme drought events.

Characteristics of Domestic Distribution Environment for Parcel Delivery Service of Fruits (국내 과실의 택배 유통환경 특성)

  • Jung, Hyun Mo;Kim, Su Il
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.21 no.2
    • /
    • pp.61-65
    • /
    • 2015
  • Agricultural products packaged for transportation are put in the various dangerous environments owing to the damage factors like vibration, shock, compression, climate etc. under the distribution process. On fruits packaging for transportation, especially, the shock and vibration is considered as the most important damage factors. A major cause of shock damage to fruits is drops during manual handling. Especially, the damages of fruits during the parcel delivery service are very serious. The parcel delivery services of fruits are increasing and contribute to increasing of farm house earning. Also, the freight vehicle is mostly used to transport the fruits. Shock and impact generated by the freight vehicle may give serious damage to fruits. The optimum packaging design of parcel delivery service of fruits during transportation is required to reduce the fruits damages. In order to design the packaging system for parcel delivery service of fruits considering the transportation environment, the comprehension of characteristics for vibration and shock generated by manual handling and acting on transportation vehicles under various road conditions and loading methods is required. This research was performed to analyze the shock characteristics, acceleration level and power spectral density (PSD) during the parcel delivery service of fruits. The overall level of recommended PSD profile in a specific transportation of parcel delivery service for fruits was $0.63G_{rms}$.

  • PDF

Renewable energy deployment policy-instruments for Cameroon: Implications on energy security, climate change mitigation and sustainable development

  • Enow-Arrey, Frankline
    • Bulletin of the Korea Photovoltaic Society
    • /
    • v.6 no.1
    • /
    • pp.56-68
    • /
    • 2020
  • Cameroon is a lower middle-income country with a population of 25.87 million inhabitants distributed over a surface area of 475,442 ㎢. Cameroon has very rich potentials in renewable energy resources such as solar energy, wind energy, small hydropower, geothermal energy and biomass. However, renewable energy constitutes less than 0.1% of energy mix of the country. The energy generation mix of Cameroon is dominated by large hydropower and thermal power. Cameroon ratified the Paris Agreement in July 2016 with an ambitious 20% greenhouse gas (GHG) emission reduction. This study attempts to investigate some renewable energy deployment policy-instruments that could enable the country enhance renewable energy deployment, gain energy independence, fulfill Nationally Determined Contribution (NDC) and achieve Sustainable Development Goals. It begins with an analysis of the status of energy sector in Cameroon. It further highlights the importance of renewable energy in mitigating climate change by decarbonizing the energy mix of the country to fulfill NDC and SDGs. Moreover, this study proposes some renewable energy deployment policy-solutions to the government. Solar energy is the most feasible renewable energy source in Cameroon. Feed-in Tariffs (FiT), is the best renewable energy support policy for Cameroon. Finally, this study concludes with some recommendations such as the necessity of building an Energy Storage System as well a renewable energy information and statistics infrastructure.

Wheat Blast in Bangladesh: The Current Situation and Future Impacts

  • Islam, M. Tofazzal;Kim, Kwang-Hyung;Choi, Jaehyuk
    • The Plant Pathology Journal
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2019
  • Wheat blast occurred in Bangladesh for the first time in Asia in 2016. It is caused by a fungal pathogen, Magnaporthe oryzae Triticum (MoT) pathotype. In this review, we focused on the current status of the wheat blast in regard to host, pathogen, and environment. Despite the many efforts to control the disease, it expanded to neighboring regions including India, the world's second largest wheat producer. However, the disease occurrence has definitely decreased in quantity, because of many farmers chose to grow alternate crops according to the government's directions. Bangladesh government planned to introduce blast resistant cultivars but knowledges about genetics of resistance is limited. The genome analyses of the pathogen population revealed that the isolates caused wheat blast in Bangladesh are genetically close to a South American lineage of Magnaporthe oryzae. Understanding the genomes of virulent strains would be important to find target resistance genes for wheat breeding. Although the drier winter weather in Bangladesh was not favorable for development of wheat blast before, recent global warming and climate change are posing an increasing risk of disease development. Bangladesh outbreak in 2016 was likely to be facilitated by an extraordinary warm and humid weather in the affected districts before the harvest season. Coordinated international collaboration and steady financial supports are needed to mitigate the fearsome wheat blast in South Asia before it becomes a catastrophe.

Optimal mix design of air-entrained slag blended concrete considering durability and sustainability

  • Wang, Xiao-Yong;Lee, Han-Seung
    • Advances in concrete construction
    • /
    • v.11 no.2
    • /
    • pp.99-109
    • /
    • 2021
  • Slag blended concrete is widely used as a mineral admixture in the modern concrete industry. This study shows an optimization process that determines the optimal mixture of air-entrained slag blended concrete considering carbonation durability, frost durability, CO2 emission, and materials cost. First, the aim of optimization is set as total cost, which equals material cost plus CO2 emission cost. The constraints of optimization consist of strength, workability, carbonation durability with climate change, frost durability, range of components and component ratio, and absolute volume. A genetic algorithm is used to determine optimal mixtures considering aim function and various constraints. Second, mixture design examples are shown considering four different cases, namely, mixtures without considering carbonation (Case 1), mixtures considering carbonation (Case 2), mixtures considering carbonation coupled with climate change (Case 3), and mixtures of high strength concrete (Case 4). The results show that the carbonization is the controlling factor of the mixture design of the concrete with ordinary strength (the designed strength is 30MPa). To meet the challenge of climate change, stronger concrete must be used. For high-strength slag blended concrete (design strength is 55MPa), strength is the control factor of mixture design.