Browse > Article
http://dx.doi.org/10.5423/PPJ.RW.08.2018.0168

Wheat Blast in Bangladesh: The Current Situation and Future Impacts  

Islam, M. Tofazzal (Department of Biotechnology, Bangabandhu Sheikh Mujibur Rahman Agricultural University)
Kim, Kwang-Hyung (Department of Climate Service and Research, APEC Climate Center)
Choi, Jaehyuk (Division of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University)
Publication Information
The Plant Pathology Journal / v.35, no.1, 2019 , pp. 1-10 More about this Journal
Abstract
Wheat blast occurred in Bangladesh for the first time in Asia in 2016. It is caused by a fungal pathogen, Magnaporthe oryzae Triticum (MoT) pathotype. In this review, we focused on the current status of the wheat blast in regard to host, pathogen, and environment. Despite the many efforts to control the disease, it expanded to neighboring regions including India, the world's second largest wheat producer. However, the disease occurrence has definitely decreased in quantity, because of many farmers chose to grow alternate crops according to the government's directions. Bangladesh government planned to introduce blast resistant cultivars but knowledges about genetics of resistance is limited. The genome analyses of the pathogen population revealed that the isolates caused wheat blast in Bangladesh are genetically close to a South American lineage of Magnaporthe oryzae. Understanding the genomes of virulent strains would be important to find target resistance genes for wheat breeding. Although the drier winter weather in Bangladesh was not favorable for development of wheat blast before, recent global warming and climate change are posing an increasing risk of disease development. Bangladesh outbreak in 2016 was likely to be facilitated by an extraordinary warm and humid weather in the affected districts before the harvest season. Coordinated international collaboration and steady financial supports are needed to mitigate the fearsome wheat blast in South Asia before it becomes a catastrophe.
Keywords
disease control; genomics; India; Pyricularia oryzae; wheat blast;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Anh, V. L., Anh, N. T., Tagle, A. G., Vy, T. T. P., Inoue, Y., Takumi, S., Chuma, I. and Tosa, Y. 2015. Rmg8, a new gene for resistance to Triticum isolates of Pyricularia oryzae in hexaploid wheat. Phytopathology 105:1568-1572.   DOI
2 Langner, T., Kamoun, S. and Belhaj, K. 2018. CRISPR crops: Plant genome editing toward disease resistance. Annu. Rev. Phytopathol. 56:479-512.   DOI
3 Anh, V. L., Inoue, Y., Asuke, S., Vy, T. T. P., Anh, N. T., Wang, S., Chuma, I. and Tosa, Y. 2018. Rmg8 and Rmg7, wheat genes for resistance to the wheat blast fungus, recognize the same avirulence gene AVR-Rmg8. Mol. Plant Pathol. 19:1252-1256.   DOI
4 Asseng, S., Ewert, F., Martre, P., Rotter, R. P., Lobell, D. B., Cammarano, D., Kimball, B. A., Ottman, M. J., Wall, G. W., White, J. W., Reynolds, M. P., Alderman, P. D., Prasad, P. V. V., Aggarwal, P. K., Anothai, J., Basso, B., Biernath, C., Challinor, A. J., De Sanctis, G., Doltra, J., Fereres, E., Garcia-Vila, M., Gayler, S., Hoogenboom, G., Hunt, L. A., Izaurralde, R. C., Jabloun, M., Jones, C. D., Kersebaum, K. C., Koehler, A. K., Muller, C., Kumar, S. N., Nendel, C., O'Leary, G., Olesen, J. E., Palosuo, T., Priesack, E., Rezaei, E. E., Ruane, A. C., Semenov, M. A., Shcherbak, I., Stockle, C., Stratonovitch, P., Streck, T., Supit, I., Tao, F., Thorburn, P. J., Waha, K., Wang, E., Wallach, D., Wolf, J., Zhao, Z. and Zhu, Y. 2015. Rising temperatures reduce global wheat production. Nat. Clim. Change 5:143-147.   DOI
5 Bhowmik, P., Ellison, E., Polley, B., Bollina, V., Kulkarni, M., Ghanbarnia, K., Song, H., Gao, C., Voytas, D. F. and Kagale, S. 2018. Targeted mutagenesis in wheat microspores using CRISPR/Cas9. Sci. Rep. 8:6502.   DOI
6 Wang, S., Asuke, S., Vy, T. T. P., Inoue, Y., Chuma, I., Win, J., Kato, K. and Tosa, Y. 2018. A new resistance gene in combination with Rmg8 confers strong resistance against Triticum isolates of Pyricularia oryzae in a common wheat landrace. Phytopathology 108:1299-1306.   DOI
7 Cardoso, C. A. d. A., Reis, E. M. and Moreira, E. N. 2008. Development of a warning system for wheat blast caused by Pyricularia grisea. Summa Phytopathol. 34:216-221.   DOI
8 Vales, M., Anzoategui, T., Huallpa, B. and Cazon, M. I. 2018. Review on resistance to wheat blast disease (Magnaporthe oryzae Triticum) from the breeder point-of-view: use of the experience on resistance to rice blast disease. Euphytica 214:1.   DOI
9 Vy, T. T. P., Hyon, G.-S., Nga, N. T. T., Inoue, Y., Chuma, I. and Tosa, Y. 2014. Genetic analysis of host-pathogen incompatibility between Lolium isolates of Pyricularia oryzae and wheat. J. Gen. Plant Pathol. 80:59-65.   DOI
10 Wang, F. J., Wang, C. L., Liu, P. Q., Lei, C. L., Hao, W., Gao, Y., Liu, Y. G. and Zhao, K. J. 2016. Enhanced rice blast resistance by CRISPR/Cas9-targeted mutagenesis of the ERF transcription factor gene OsERF922. PLoS One 11:e0154027.   DOI
11 Wulff, B. B. H. and Dhugga, K. S. 2018. Wheat-the cereal abandoned by GM. Science 361:451-452.   DOI
12 Zhan, S., Mayama, S. and Tosa, Y. 2008. Identification of two genes for resistance to Triticum isolates of Magnaporthe oryzae in wheat. Genome 51:216-221.   DOI
13 Marangoni, M. S., Nunes, M. P., Fonseca, N. and Mehta, Y. R. 2013. Pyricularia blast on white oats - a new threat to wheat cultivation. Trop. Plant Pathol. 38:198-202.   DOI
14 Nga, N., Hau, V. T. and Tosa, Y. 2009. Identification of genes for resistance to a Digitaria isolate of Magnaporthe grisea in common wheat cultivars. Genome 52:801-809.   DOI
15 Miah, M. A. M., Haque, A. K. E. and Hossain, S. 2014. Economic impact of climate change on wheat productivity in Bangladesh: A Ricardian approach. In: Science, Policy and Politics of Modern Agricultural System, eds. by M. Behnassi, S. A. Shahid and N. Mintz-Habib, pp. 97-108. Springer, Dordrecht, Nederland.
16 Mottaleb, K. A., Singh, P. K., Sonder, K., Kruseman, G., Tiwari, T. P., Barma, N. C. D., Malaker, P. K., Braun, H. J. and Erenstein, O. 2018. Threat of wheat blast to South Asia's food security: An ex-ante analysis. PLoS One 13:e0197555.   DOI
17 Nekrasov, V., Wang, C., Win, J., Lanz, C., Weigel, D. and Kamoun, S. 2017. Rapid generation of a transgene-free powdery mildew resistant tomato by genome deletion. Sci. Rep. 7:482.   DOI
18 Pennisi, E. 2010. Armed and dangerous. Science 327:804-805.   DOI
19 Pagani, A. P. S., Dianese, A. C. and Cafe-Filho, A. C. 2014. Management of wheat blast with synthetic fungicides, partial resistance and silicate and phosphite minerals. Phytoparasitica 42:609-617.   DOI
20 Peng, A. H., Chen, S. C., Lei, T. G., Xu, L. Z., He, Y. R., Wu, L., Yao, L. X. and Zou, X. P. 2017. Engineering canker-resistant plants through CRISPR/Cas9-targeted editing of the susceptibility gene CsLOB1 promoter in citrus. Plant Biotechnol. J. 15:1509-1519.   DOI
21 Pieck, M. L., Ruck, A., Farman, M. L., Peterson, G. L., Stack, J. P., Valent, B. and Pedley, K. F. 2017. Genomics-based marker discovery and diagnostic assay development for wheat blast. Plant Dis. 101:103-109.   DOI
22 Tagle, A. G., Chuma, I. and Tosa, Y. 2015. Rmg7, a new gene for resistance to Triticum isolates of Pyricularia oryzae identified in tetraploid wheat. Phytopathology 105:495-499.   DOI
23 Sadat, M. A. and Choi, J. 2017. Wheat blast: A new fungal inhabitant to Bangladesh threatening world wheat production. Plant Pathol. J. 33:103-108.   DOI
24 Smith, T. M., Reynolds, R. W., Peterson, T. C. and Lawrimore, J. 2008. Improvements to NOAA's historical merged land- ocean surface temperature analysis (1880-2006). J. Clim. 21:2283-2296.   DOI
25 Surovy, M. Z., Gupta, D. R., Chanclud, E., Win, J., Kamoun, S. and Islam, T. 2017. Plant probiotic bacteria suppress wheat blast fungus Magnaporthe oryzae Triticum pathotype. Figshare doi: 10.6084/m9.figshare.5549278.v1.
26 Takabayashi, N., Tosa, Y., Oh, H. S. and Mayama, S. 2002. A gene-for-gene relationship underlying the species-specific parasitism of Avena/Triticum isolates of Magnaporthe grisea on wheat cultivars. Phytopathology 92:1182-1188.   DOI
27 Islam, M. T., Croll, D., Gladieux, P., Soanes, D. M., Persoons, A., Bhattacharjee, P., Hossain, M. S., Gupta, D. R., Rahman, M. M., Mahboob, M. G., Cook, N., Salam, M. U., Surovy, M. Z., Sancho, V. B., Maciel, J. L. N., NhaniJunior, A., Castroagudin, V. L., de Assis Reges, J. T., Ceresini, P. C., Ravel, S., Kellner, R., Fournier, E., Tharreau, D., Lebrun, M. H., McDonald, B. A., Stitt, T., Swan, D., Talbot, N. J., Saunders, D. G. O., Win, J. and Kamoun, S. 2016. Emergence of wheat blast in Bangladesh was caused by a South American lineage of Magnaporthe oryzae. BMC Biol. 14:84.   DOI
28 Hossain, A. and da Silva, J. A. T. 2012. Wheat production in Bangladesh: its future in the light of global warming. AoB. Plants 5:pls042.
29 Igarashi, S., Utiamada, C. M., Igarashi, L. C., Kazuma, A. H. and Lopes, R. S. 1986. Pyricularia em trigo. 1. Ocorrencia de Pyricularia sp. no estado do Parana. Fitopatol. Bras. 11:351-352 (in Portugues).
30 Inoue, Y., Vy, T. T. P., Yoshida, K., Asano, H., Mitsuoka, C., Asuke, S., Anh, V. L., Cumagun, C. J. R., Chuma, I., Terauchi, R., Kato, K., Mitchell, T., Valent, B., Farman, M. and Tosa, Y. 2017. Evolution of the wheat blast fungus through functional losses in a host specificity determinant. Science 357:80-83.   DOI
31 Castroagudin, V. L., Ceresini, P. C., de Oliveira, S. C., Reges, J. T., Maciel, J. L., Bonato, A. L., Dorigan, A. F. and McDonald, B. A. 2015. Resistance to QoI fungicides is widespread in Brazilian populations of the wheat blast pathogen Magnaporthe oryzae. Phytopathology 105:284-294.   DOI
32 Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L., Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K., Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da Silva, A. M., Gu, W., Kim, G., Koster, R., Lucchesi, R., Merkova, D., Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert, S. D., Sienkiewicz, M. and Zhao, B. 2017. The modern-era retrospective analysis for research and applications, version 2 (MERRA-2). J. Clim. 30:5419-5454.   DOI
33 Gladieux, P., Condon, B., Ravel, S., Soanes, D., Maciel, J. L. N., Nhani, A., Chen, L., Terauchi, R., Lebrun, M. H., Tharreau, D., Mitchell, T., Pedley, K. F., Valent, B., Talbot, N. J., Farman, M. and Fournier, E. 2017. Gene flow between divergent cerealand grass-specific lineages of the rice blast fungus Magnaporthe oryzae. mBio 9:e01219-01217.
34 Gupta, D. R., Avila, C. S. R., Win, J., Soanes, D. M., Ryder, L. S., Croll, D., Bhattacharjee, P., Hossain, M. S., Mahmud, N. U., Mehbub, M. S., Surovy, M. Z., Talbot, N. J., Kamoun, S. and Islam, M. T. 2018. The MoT3 assay does not distinguish between Magnaporthe oryzae wheat and rice blast isolates from Bangladesh. Phytopathology doi: 10.1094/PHYTO-06-18-0199-LE. (in Press)
35 Ceresini, P. C., Castroagudin, V. L., Rodrigues, F. A., Rios, J. A., Eduardo Aucique-Perez, C., Moreira, S. I., Alves, E., Croll, D. and Maciel, J. L. N. 2018. Wheat blast: past, present, and future. Annu. Rev. Phytopathol. 56:427-256.   DOI
36 Fernandes, J. M. C., Nicolau, M., Pavan, W., Holbig, C. A., Karrei, M., de Vargas, F., Bavaresco, J. L. B., Lazzaretti, A. T. and Tsukahara, R. Y. 2017. A weather-based model for predicting early season inoculum build-up and spike infection by the wheat blast pathogen. Trop. Plant Pathol. 42:230-237.   DOI
37 Cruz, C. D., Peterson, G. L., Bockus, W. W., Kankanala, P., Dubcovsky, J., Jordan, K. W., Akhunov, E., Chumley, F., Baldelomar, F. D. and Valent, B. 2016. The 2NS translocation from aegilops ventricosa confers resistance to the triticum pathotype of Magnaporthe oryzae. Crop Sci. 56:990-1000.   DOI
38 Dutta, S., Surovy, M. Z., Gupta, D. R., Mahmud, N. U., Chanclud, E., Win, J., Kamoun, S. and Islam, T. 2018. Genomic analyses reveal that biocontrol of wheat blast by Bacillus spp. may be linked with production of antimicrobial compounds and induced systemic resistance in host plants. Figshare doi: 10.6084/m9.figshare.5852661.v1.
39 Farman, M., Peterson, G., Chen, L., Starnes, J., Valent, B., Bachi, P., Murdock, L., Hershman, D., Pedley, K., Fernandes, J. M. and Bavaresco, J. 2017. The Lolium pathotype of Magnaporthe oryzae recovered from a single blasted wheat plant in the United States. Plant Dis. 101:684-692.   DOI
40 Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L. and Gurr, S. J. 2012. Emerging fungal threats to animal, plant and ecosystem health. Nature 484:186-194.   DOI
41 Kato, H., Yamamoto, M., Yamaguchi-Ozaki, T., Kadouchi, H., Iwamoto, Y., Nakayashiki, H., Tosa, Y., Mayama, S. and Mori, N. 2000. Pathogenicity, mating ability and DNA restriction fragment length polymorphisms of Pyricularia populations isolated from Gramineae, Bambusideae and Zingiberaceae plants. J. Gen. Plant Pathol. 66:30-47.   DOI
42 Haque, E., Taniguchi, H., Hassan, M. M., Bhowmik, P., Karim, M. R., Smiech, M., Zhao, K., Rahman, M. and Islam, T. 2018. Application of CRISPR/Cas9 genome editing technology for the improvement of crops cultivated in tropical climates: Recent progress, prospects, and challenges. Front. Plant Sci. 9:617.   DOI
43 Kohli, M. M., Mehta, Y. R., Guzman, E., De Viedma, L. and Cubilla, L. E. 2011. Pyricularia blast - a threat to wheat cultivation. Czech J. Genet. Plant. Breed. 47:S130-S134.   DOI
44 Maciel, J. L. 2011. Magnaporthe oryzae, the blast pathogen: current status and options for its control. CAB Rev. 6:1-8.   DOI
45 Maciel, J. L., Ceresini, P. C., Castroagudin, V. L., Zala, M., Kema, G. H. and McDonald, B. A. 2014. Population structure and pathotype diversity of the wheat blast pathogen Magnaporthe oryzae 25 years after its emergence in Brazil. Phytopathology 104:95-107.   DOI
46 Malaker, P. K., Barma, N. C. D., Tiwari, T. P., Collis, W. J., Duveiller, E., Singh, P. K., Joshi, A. K., Singh, R. P., Braun, H.-J., Peterson, G. L., Pedley, K. F., Farman, M. L. and Valent, B. 2016. First report of wheat blast caused by Magnaporthe oryzae pathotype triticum in Bangladesh. Plant Dis. 100:2330.
47 Ha, X., Koopmann, B. and von Tiedemann, A. 2016. Wheat blast and Fusarium head blight display contrasting interaction patterns on ears of wheat genotypes differing in resistance. Phytopathology 106:270-281.   DOI
48 Callaway, E. 2016. Devastating wheat fungus appears in Asia for first time. Nature 532:421-422.   DOI