• Title/Summary/Keyword: Serratia marcescens MG1

Search Result 16, Processing Time 0.019 seconds

Optimization of Culture Conditions for toe Production of Chitinase (Chitinase 생성을 위한 배did 조건 최적화)

  • 차진명;석근영;차월석
    • KSBB Journal
    • /
    • v.16 no.4
    • /
    • pp.365-369
    • /
    • 2001
  • Chitinase producing microorganism, Serratia marcescens KY, was isolated from seashore mud around Beobseongpo in Chunnam province by selective enrichment culture. As the colloidal chitin concentration increased, chitinase production was increased. But chitinase production with addition of other carbon sources (glucose, fructose, galactose, maltose, sucrose, starch) was decreased. The effect of nitrogen sources on the chitinase production with serratia marcescens KY was as fellows. The opitimum mineral concentration for chitinase production was K$_2$HPO$_4$ 0.2 g/L and MgSO$_4$ 0.20 ∼ 0.25 g/L, respectively. The effect of nitrogen sources on chitinase production by Serratia marcescens KY was increased as follows, tryptone > yeast extract > beef extract > asparagine.

  • PDF

Purification and Some Properties of Chitinase from Serratia marcescens JM (Serratia marcescens JM에 의한 Chitinase의 정제와 특성)

  • Lee, Sang Hwan;Yu, Euy-Kyung
    • Journal of the Korean Chemical Society
    • /
    • v.40 no.1
    • /
    • pp.72-80
    • /
    • 1996
  • A chitinase-producing bacterium, Serratia marcescens JM, was isolated from a seashore muds. A chitinase was purified by ammonium sulfate precipitation, affinity adsorption, hydroxylapatite and sephadex G-200 column chromatography. The chitinase obtained from Serratia marcescens JM was purified 42.2 folds with the overall yield of 7.1%. The purified chitinase showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis. The molecular weight of the enzyme was 59,000 and the apparent kinetic parameters $K_m\;and\;V_{max}$ for the purified chitinase were 5.17 mg/mL and 39.8 unit/mL, respectively. The optimum pH and temperature of the purified chitinase were 7.0 and 50$^{\circ}C$, respectively and the purified enzyme was stable on pH 7.0 up to 50$^{\circ}C$. The enzyme were activated by $Cu^{2+},\;Ca^{2+}\;and\;Mg^{2+}$ and inhibited by $Hg^{2+}$ respectively. In addition, Cysteine increased the chitinase activity and EDTA, MIA, PCMB and SDS inhibited enzyme activities. Major cations, $MG^{2+},\;Ca^{2+},\;K^+\;and\; Na^+$ present in seawater slightly stimulated the chitinase activity.

  • PDF

Cloning of Serratia marcescens KFRI314 chitinase genes and its role on chitin degradation (Serratia marcescens KFRI314 chitinase 유전자의 클로닝과 키틴분해에 관한 효소의 역할)

  • Kim, Jungtae;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.30 no.B
    • /
    • pp.61-68
    • /
    • 2010
  • Three chitinase genes (chiA, chiB, and chiC) were cloned into E. coli by PCR amplification from Serratia marcescens KFRI314. The sizes of cloned chitinase genes were 1692 bp, 1500 bp, and 1443 bp which correspond to 563, 499, and 480 amino acids, respectively. Recombinant chitinases were overexpressed using pHCEIA expression vector and purified to homogenity. The molecular weights of chitinases were about 60kDa, 50 kDa, 52 kDa, respectively. Optimum pHs were around pH 5~6 and optimum temperatures were $45{\sim}50^{\circ}C$ while 90% of enzyme activities were stable up to $50^{\circ}C$. The specific activities of ChiA, ChiB, and ChiC were 233.1, 278.8, $111.3{\mu}mol\;(min)^{-1}\;mg^{-1}$ against colloidal chitin. From experiments using TLC and fluorescent substrate analogues, it was demonstrated that ChiA was endo-chitinase while ChiB and ChiC were chitobiosidase.

  • PDF

The Properties of Acetolactate Synthase Isozyme Produced by Serratia marcescens ATCC 254 19 (Serratia marcescens ATCC 25419가 생산하는 Acetolactate Synthase Isozyme의 특성)

  • 김종탁;김승수
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.1
    • /
    • pp.25-33
    • /
    • 1992
  • One acetolactate synthase isozyme which has Rf value of 0.83 on polyacrylamide gel electrophoresis was purified from Sewatia marcescens ATCC 25419 by ammonium sulfate fractionation, DEAE-Sephacel chromatography, Phenyl-Sepharose chromatography, Sephacryt S-400 gel filtration followed by native gel elution. The native molecular weight of the enzyme was determined to be 531,400 by gel filtration method, and SDS-polyacrylamide gel electrophoresis separated the native enzyme into two polypeptides having molecular sizes of 55,000 and 38,900 respectively. In kinetic parameters, $K_m$ value for pyruvate was 2.54 mM, and $V_{max}$ was 21.75 nmoie/min/mg. The enzyme showed maximal activity around pH 8.0 and optimal temperature of the acetolactate formation was $37^{\circ}C$. Feedback inhibition studies indicate that the purified enzyme is rather resistant to branched chain amino acids when compared with acetolactate synthase isozymes of plants or other enterobacteria.

  • PDF

Isolation and Characterization of Bacteria Capable of Degrading Bisphenol A (Bisphenol A 분해세균의 분리 및 특성)

  • 김희식;이영기;이완석;박찬선;윤병대;오희목
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.189-196
    • /
    • 2001
  • Eighty-seven microbial strains capable of growing on bisphenol A (BPA) as a sole carbon source were isolated from soils, waste waters and sludges. Among them, three bacterial strains were finally selected as potential decomposers through measuring BPA-degradation efficiency by HPLC analysis. Two of these bacterial strains were identified as Serratia marcescens 1901 and S. marcescens 1902, and another was Pseudomonas putida 1401 by 16S rDNA partial sequences and based on morphological and physiological properties. They showed higher cell growth and BPA degradation in PAV (PAS medium containing vitamin mixtures) than in PAS medium. The degradation efficiencies of these bacterial strains were within a range of 20-40% in the PAV containing 500 mg/1 or 100 mg/l of BPA fur 3 days. S. marcescens 1901 showed higher degradation efficiency at 100 mg/1 of BPA than those of other selected strains, while S. marcescens 1902 and P. putida 1401 degraded a high concentration of BPA (500 mg/l) with a degradation efficiency of 40% for 3 days. The BPA degradation using a mixed culture of three selected strains showed the similar level of dog-radation efficiency with that using a pure culture.

  • PDF

Isolation of Serratia marcescens CK-3 against phytopathogenic fungi and its enzymatic properties (식물(植物) 병원류(病源惟) 사상균(絲狀菌)에 길항력(拮抗力)을 갖는 Serratia marcescens CK-3의 분리(分離) 및 효소적(酵素的) 성질(性質))

  • Kim, Yeong-Yil;Rhee, Young-Hwan;Kim, Kwang-Sik;Park, Hwa-Sung;Chun, Woo-Bock;Lee, Jae-Wha;Kim, Jong-Hyun
    • Applied Biological Chemistry
    • /
    • v.34 no.1
    • /
    • pp.54-60
    • /
    • 1991
  • Serratia marcescens CK-3, decomposing chitin which is a mar component of cell wall in phyitopathogenic fungi, was isolated from the continuous cropping rhizosphere of pepper and cucumber and its enzymatic property was examined. S. marcescens CK-3 was found tn have an tagonistic effects against, Fusarium axysporum and Rhizoctonia solani and to have complex enzyme system such as chitinase, laminarinase, and proteinase. The preferable composition of the medium for production of chitinase was fond and was as follows : colloidal chitin 1.5%, tryptone 0.5%, glucose 1.0%, peptone 0.2%, $MgSO_4{\cdot}7H_2O\;0.1%,\;K_2HPO_4\;0.1%,\;and\;NaCl\;0.1%$(w/v), pH 6.8. The maximum enzyme production was observed after culture of 72 hours at $30^{\circ}C$ using a medium containing the above chemical composition. The optimal pH and temperature for in vitro activity of chitinase from S. marcescens CK-3 were pH 7.5 and $50^{\circ}C$, respectively. The enzyme activity in-creased by metal ions such as$Ag^+$ and $Mn^{++}$.

  • PDF

Screening, Characterization, and Cloning of a Solvent-Tolerant Protease from Serratia marcescens MH6

  • Wan, Mao-Hua;Wu, Bin;Ren, Wei;He, Bing-Fang
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.881-888
    • /
    • 2010
  • solvent-tolerant bacterium strain, MH6, was isolated by hydrophilic organic solvent DMSO enrichment in the medium and identified as Serratia marcescens. The extracellular protease with novel organic-solvent-stable properties from strain MH6 was purified and characterized. The molecular mass of the purified protease was estimated to be 52 kDa on SDS-PAGE. The open reading frame (ORF) of the MH6 protease encoded 504 amino acids with 471 amino acid residues in the mature protease. Based on the inhibitory effects of EDTA and 1,10-phenathroline, the MH6 protease was characterized as a metalloproteinase. The enzyme activity was increased in the presence of $Ni^{2+}$, $Mg^{2+}$, and $Ca^{2+}$. The protease could also be activated by the nonionic surfactants Tween 80 (1.0%) and Triton X-100 (1.0%). The protease showed remarkable solvent stability in the presence of 50% (v/v) solutions of long-chain alkanes and long-chain alcohols. It was also fairly stable in the presence of 25% solutions of hydrophilic organic solvents. Owing to its high stability in solvents and surfactants, the MH6 protease is an ideal candidate for applications in organic catalysis and other related fields.

Biodegradation of Diazinon by Serratia marcescens DI101 and its Use in Bioremediation of Contaminated Environment

  • Abo-Amer, Aly E.
    • Journal of Microbiology and Biotechnology
    • /
    • v.21 no.1
    • /
    • pp.71-80
    • /
    • 2011
  • Four diazinon-degrading bacteria were isolated from agricultural soil by using an enrichment technique. The biochemical analysis and molecular method including RFLP indicated that these isolates were identical, and one strain designated DI101 was selected for further study. Phylogenetic analysis based on 16S rDNA sequencing indicated that the strain DI101 clearly belongs to the Serratia marcescens group. The ability of the strain to utilize diazinon as a source of carbon and phosphorus was investigated under different culture conditions. The DI101 strain was able to completely degrade 50 mg/l diazinon in MSM within 11 days with a degradation rate of 0.226 $day^{-1}$. The inoculation of sterilized soil treated with 100 mg/kg of diazinon with $10^6$ CFU/g DI101 resulted in a faster degradation rate than was recorded in non-sterilized soil. The diazinon degradation rate by DI101 was efficient at temperatures from 25 to $30^{\circ}C$ and at pHs from 7.0 to 8.0. The degradation rate of diazinon was not affected by the absence of a phosphorus supplement, and addition of other carbon sources (glucose or succinate) resulted in the slowing down of the degradation rate. The maximum degradation rate ($V_{max}$) of diazinon was 0.292 $day^{-1}$ and its saturation constant ($K_s$) was 11 mg/l, as determined by a Michaelis-Menten curve. The strain was able to degrade diethylthiophosphate-containing organophosphates such as chlorpyrifos, coumaphos, parathion, and isazofos when provided as a source of carbon and phosphorus, but not ethoprophos, cadusafos, and fenamiphos. These results propose useful information for the potential application of the DI101 strain in bioremediation of pesticide-contaminated environments.

N-Acyl-Homoserine Lactone Quorum Sensing Switch from Acidogenesis to Solventogenesis during the Fermentation Process in Serratia marcescens MG1

  • Jin, Wensong;Lin, Hui;Gao, Huifang;Guo, Zewang;Li, Jiahuan;Xu, Quanming;Sun, Shujing;Hu, Kaihui;Lee, Jung-Kul;Zhang, Liaoyuan
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.596-606
    • /
    • 2019
  • N-acyl-homoserine lactone quorum sensing (AHL-QS) has been shown to regulate many physiological behaviors in Serratia marcescens MG1. In the current study, the effects of AHL-QS on the biosynthesis of acid and neutral products by S. marcescens MG1 and its isogenic ${\Delta}swrI$ with or without supplementing exogenous N-hexanoyl-L-homoserine lactone ($C_6-HSL$) were systematically investigated. The results showed that swrI disruption resulted in rapid pH drops from 7.0 to 4.8, which could be restored to wild type by supplementing $C_6-HSL$. Furthermore, fermentation product analysis indicated that ${\Delta}swrI$ could lead to obvious accumulation for acidogenesis products such as lactic acid and succinic acid, especially excess acetic acid (2.27 g/l) produced at the early stage of fermentation, whereas solventogenesis products by ${\Delta}swrI$ appeared to noticeably decrease by an approximate 30% for acetoin during 32-48 h and by an approximate 20% for 2,3-butanediol during 24-40 h, when compared to those by wild type. Interestingly, the excess acetic acid produced could be removed in an AHL-QS-independent manner. Subsequently, quantitative real-time PCR was used to determine the mRNA expression levels of genes responsible for acidogenesis and solventogenesis and showed consistent results with those of product synthesis. Finally, by close examination of promoter regions of the analyzed genes, four putative luxI box-like motifs were found upstream of genes encoding acetyl-CoA synthase, lactate dehydrogenase, ${\alpha}$-acetolactate decarboxylase, and Lys-like regulator. The information from this study provides a novel insight into the roles played by AHL-QS in switching from acidogenesis to solventogenesis in S. marcescens MG1.

Purification and Characterization of Metalloprotease from Serratia marcescens PPB-26 and Its Application for Detergent Additive

  • Thakur, Shikha;Sharma, Nirmal Kant;Thakur, Neerja;Bhalla, Tek Chand
    • Microbiology and Biotechnology Letters
    • /
    • v.47 no.2
    • /
    • pp.259-268
    • /
    • 2019
  • In this study, the extracellular metalloprotease from Serratia marcescens PPB-26 was purified to homogeneity via ethanol fractionation and DEAE-cellulose column chromatography. Thus, a 3.8-fold purification was achieved with a 20% yield and specific activity of 76.2 U/mg. The purified protease was a 50-kDa monomer whose optimum pH and temperature for activity were 7.5 and $30^{\circ}C$ respectively; however, it was found to remain active in the 5-9 pH range and up to $40^{\circ}C$ for 6 h. The protease had a half-life of 15 days at $4^{\circ}C$, an optimum reaction time of 10 min, and an optimum substrate (casein) concentration of 0.25%. Furthermore, the Michaelis constant ($K_m$) and reaction velocity ($V_{max}$) of the protease were calculated to be 0.28% and $111.11{\mu}moles/(min{\cdot}mg)^{-1}$, respectively. The protease was stable when subjected to metal ions (2 mM), showing increased activity with most (especially $CoCl_2$ and $MgSO_4$ (30.54% increase)). It was also stable when exposed to oxidizing agents, bleaching agents, and detergents (5% v/v for 60 min). It retained 93% of its activity in non-ionic detergents (Tween-20, Tween-80, and Triton X-100). Moreover, wash performance analysis in commercial detergents (Ariel and Tide) showed that not only was the protease capable of protein stain removal, but also reduced cleaning time by 80% when added to detergents. Thus, the Serratia marcescens PPB-26 metalloprotease appears to be a promising new candidate as a laundry additive in the detergent industry.