Browse > Article
http://dx.doi.org/10.4014/jmb.0910.10038

Screening, Characterization, and Cloning of a Solvent-Tolerant Protease from Serratia marcescens MH6  

Wan, Mao-Hua (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
Wu, Bin (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
Ren, Wei (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
He, Bing-Fang (College of Biotechnology and Pharmaceutical Engineering, Nanjing University of Technology)
Publication Information
Journal of Microbiology and Biotechnology / v.20, no.5, 2010 , pp. 881-888 More about this Journal
Abstract
solvent-tolerant bacterium strain, MH6, was isolated by hydrophilic organic solvent DMSO enrichment in the medium and identified as Serratia marcescens. The extracellular protease with novel organic-solvent-stable properties from strain MH6 was purified and characterized. The molecular mass of the purified protease was estimated to be 52 kDa on SDS-PAGE. The open reading frame (ORF) of the MH6 protease encoded 504 amino acids with 471 amino acid residues in the mature protease. Based on the inhibitory effects of EDTA and 1,10-phenathroline, the MH6 protease was characterized as a metalloproteinase. The enzyme activity was increased in the presence of $Ni^{2+}$, $Mg^{2+}$, and $Ca^{2+}$. The protease could also be activated by the nonionic surfactants Tween 80 (1.0%) and Triton X-100 (1.0%). The protease showed remarkable solvent stability in the presence of 50% (v/v) solutions of long-chain alkanes and long-chain alcohols. It was also fairly stable in the presence of 25% solutions of hydrophilic organic solvents. Owing to its high stability in solvents and surfactants, the MH6 protease is an ideal candidate for applications in organic catalysis and other related fields.
Keywords
Organic solvent tolerance; metalloproteinase; screening; nonaqueous enzymology; Serratia marcescens;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Kato, C., A. Inoue, and K. Horikoshi. 1996. Isolating and characterizing deep-sea marine microorganisms. Trends Biotechnol. 14: 6-12.   DOI   ScienceOn
2 Na, K. S., A. Kuroda, N. Takiguchi, T. Ikeda, H. Ohtake, and J. Kato. 2005. Isolation and characterization of benzene tolerant Rhodococcus opacus strains. J. Biosci. Bioeng. 99: 378-382.   DOI   ScienceOn
3 Rahman, R. N. Z. R. A., S. Mahamad, A. B. Salleh, and M. Basri. 2007. A new organic solvent tolerant protease from Bacillus pumilus 115b. J. Industr. Microbiol. Biotechnol. 34: 509-517.   DOI   ScienceOn
4 Wang, S. L., J. H. Peng, T. W. Liang, and K. C. Liu. 2008. Purification and characterization of a chitosanase from Serratia marcescens TKU011. Carbohydr. Res. 343: 1316-1323.   DOI   ScienceOn
5 Shome, A., S. Roy, and P. K. Das. 2007. Nonionic surfactants: A key to enhance the enzyme activity at cationic reverse micellar interface. Langmuir 23: 4130-4136.   DOI   ScienceOn
6 So, J. E., J. S. Shin, and B. G. Kim. 2000. Protease-catalyzed tripeptide (RGD) synthesis. Enz. Microb. Technol. 26: 108-114.   DOI   ScienceOn
7 Tang, X. Y., B. Wu, H. J. Ying, and B. F. He. Biochemical properties and potential applications of a solvent-stable protease from the high-yield protease producer Pseudomonas aeruginosa PT121. Appl. Biochem. Biotechnol. 160: 1017-1031.
8 Tang, X. Y., Y. Pan, S. Li, and B. F. He. 2008. Screening and isolation of an organic solvent-tolerant bacterium for high-yield production of organic solvent-stable protease. Bioresource Technol. 99: 7388-7392.   DOI   ScienceOn
9 Tsuchiyama, S., N. Doukyu, M. Yasuda, K. Ishimi, and H. Ogino. 2007. Peptide synthesis of aspartame precursor using organic-solvent-stable PST-01 protease in monophasic aqueousorganic solvent systems. Biotechnol. Progr. 23: 820-823.   DOI
10 Ustariz, F. J., A. Laca, L. A. Garcia, and M. Diaz. 2008. Fermentation conditions increasing protease production by Serratia marcescens in fresh whey. Revista Tecnica De La Facultad De Ingenieria Universidad Del Zulia 31: 79-89.
11 Yogita, N. and S. B. Sardessai. 2004. Industrial potential of organic solvent tolerant bacteria. Biotechnol. Progress 20: 655-660.   DOI   ScienceOn
12 Zhao, L. L., J. H. Xu, J. Zhao, J. Pan, and Z. L. Wang. 2008. Biochemical properties and potential applications of an organic solvent-tolerant lipase isolated from Serratia marcescens ECU1010. Process Biochem. 43: 626-633.   DOI   ScienceOn
13 Ogino, H. and H. Ishikawa. 2001. Enzymes which are stable in the presence of organic solvents. J. Biosci. Bioeng. 91: 109-116.   DOI   ScienceOn
14 Ogino, H., S. Nakagawa, K. Shinya, T. Muto, N. Fujimura, M. Yasuda, and H. Ishikawa. 2000. Purification and characterization of organic solvent-stable lipase from organic solvent-tolerant Pseudomonas aeruginosa LST-03. J. Biosci. Bioeng. 89: 451-457.   DOI   ScienceOn
15 Ogino, H., T. Uchiho, N. Doukyu, M. Yasuda, K. Ishimi, and H. Ishikawa. 2007. Effect of exchange of amino acid residues of the surface region of the PST-01 protease on its organic solvent-stability. Biochem. Biophys. Res. Commun. 358: 1028-1103.   DOI   ScienceOn
16 Rahman, R. N. Z. R. A., L. P. Geok, M. Basri, and A. B. Salleh. 2006. An organic solvent-stable alkaline protease from Pseudomonas aeruginosa strain K: Enzyme purification and characterization. Enz. Microb. Technol. 39: 1484-1491.   DOI   ScienceOn
17 Rai, S. K. and A. K. Mukherjee. 2009. Ecological significance and some biotechnological application of an organic solvent stable alkaline serine protease from Bacillus subtilis strain DM- 04. Bioresource Technol. 100: 2642-2645.   DOI   ScienceOn
18 Rolland, V. and R. Lazaro. 2001. Synthetic Applications of Enzymes in Nonaqueous Media, pp. 357-371.
19 Romero, F. J., L. A. Garcia, J. A. Salas, M. Diaz, and L. M. Quiros. 2001. Production, purification and partial characterization of two extracellular proteases from Serratia marcescens grown in whey. Process Biochem. 36: 507-515.
20 Roy, I., S. Sharma, and M. N. Gupta. 2004. Smart Biocatalysts: Design and Applications, pp. 251-310.
21 Sardessai, Y. and S. Bhosle. 2002. Tolerance of bacteria to organic solvents. Res. Microbiol. 153: 263-268.   DOI   ScienceOn
22 Sareen, R., U. T. Bornscheuer, and P. Mishra. 2004. Synthesis of kyotorphin precursor by an organic solvent-stable protease from Bacillus licheniformis RSP-09-37. J. Molec. Catal. B Enz. 32: 1-5.   DOI   ScienceOn
23 Braunagel, S. C. and M. J. Benedik. 1990. The metalloprotease gene of Serratia marcescens strain SM6. Molec. Gen. Genet. MGG 222: 446-451.   DOI   ScienceOn
24 David, N. P., J. C. P. Darryl, M. C. David, and S. C. John. 1999. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20: 3551-3567.
25 Fang, Y. W., S. Liu, S. J. Wang, and M. S. Lv. 2009. Isolation and screening of a novel extracellular organic solvent-stable protease producer. Biochem. Eng. J. 43: 212-215.   DOI   ScienceOn
26 Geok, L. P., C. N. A. Razak, R. N. Z. Abd Rahman, M. Basri, and A. B. Salleh. 2003. Isolation and screening of an extracellular organic solvent-tolerant protease producer. Biochem. Eng. J. 13: 73-77.   DOI   ScienceOn
27 Gupta, A. and S. K. Khare. 2006. A protease stable in organic solvents from solvent tolerant strain of Pseudomonas aeruginosa. Bioresource Technol. 97: 1788-1793.   DOI   ScienceOn
28 Iyer, P. V. and L. Ananthanarayan. 2008. Enzyme stability and stabilization - Aqueous and non-aqueous environment. Process Biochem. 43: 1019-1032.   DOI   ScienceOn
29 Klibanov, A. M. 2001. Improving enzymes by using them in organic solvents. Nature 409: 241-246.   DOI   ScienceOn
30 Lalonde, J., E. Witte, M. O'Connell, and L. Holliday. 1995. Protease stabilization by highly concentrated anionic surfactant mixtures. J. Am. Oil Chem. Soc. 72: 53-59.   DOI   ScienceOn
31 Li, S., B. F. He, Z. Z. Bai, and P. K. Ouyang. 2009. A novel organic solvent-stable alkaline protease from organic solventtolerant Bacillus licheniformis YP1A. J. Molec. Catal. B Enz. 56: 85-88.   DOI   ScienceOn
32 Niehaus, F., C. Bertoldo, M. Kahler, and G. Antranikian. 1999. Extremophiles as a source of novel enzymes for industrial application. Appl. Microbiol. Biotechnol. 51: 711-729.   DOI   ScienceOn
33 Aiyappa, P. S. and J. O. Harris. 1976. The extracellular metalloprotease of Serratia marcescens: I. Purification and characterization. Mol. Cell Biochem. 13: 95-100.   DOI   ScienceOn
34 Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248-254.   DOI   ScienceOn
35 Shimogaki, H., K. Takeuchi, T. Nishino, M. Ohdera, T. Kudo, K. Ohba, M. Iwama, and M. Irie. 1991. Purification and properties of a novel surface active agent and alkaline resistant protease from Bacillus sp. Y. Agric. Biol. Chem. 55: 2251-2258.   DOI   ScienceOn