• Title/Summary/Keyword: Serotonin depletion

Search Result 6, Processing Time 0.021 seconds

Glutamate-Induced Serotonin Depletion in Fetal Rat Brainstem Cultures (흰쥐태 뇌간의 배양에서 Glutamate에 의한 Serotonin의 고갈)

  • Park, Sang-Wook;Wie, Myung-Bok;Song, Dong-Keun;Kim, Yong-Sik;Kim, Yung-Hi
    • The Korean Journal of Pharmacology
    • /
    • v.29 no.2
    • /
    • pp.189-193
    • /
    • 1993
  • Exposure of dissociated cultures from fetal rat brainstem to glutamate for upto 6 h decreased cellular contents of 5-hydroxytryptamine and 5-hydroxyindoleacetic acid in a concentration- and time-dependent manner. In addition, glutamate induced lactate dehydrogenase leakage. Tetrodotoxin did not block the effects induced by glutamate. MK-801 $(1{\mu}M)$, an N-methyl-D-aspartate (NMDA) channel blocker, but not 6-cyano-2,3-dihydroxy-7-nitro-quinoxazoline $(CNQX;\;3{\mu}M)$, a non-NMDA receptor antagonist, blocked glutamate-induced effects, indicating that these glutamate-induced responses are mediated through NMDA receptors.

  • PDF

Norepinephrine and Serotonin in the Patients with Psychogenic Impotence (심인성 발기부전 환자에서 Norepinephrine과 Serotonin에 관한 연구)

  • Kim, Jin Se;Ryu, Seung Ho;Moon, Du Geon;Kim, Je Jong;Jung, In Kwa
    • Korean Journal of Biological Psychiatry
    • /
    • v.5 no.2
    • /
    • pp.278-282
    • /
    • 1998
  • Various neurotransmitters have been proposed as possible mediators of penile erection. Especially, norepinephrine and serotonin might have a important role in sexual arousal and penile erection. And it could be hypothesized that the psychogenic impotence is associated with the depletion or imbalance of norepinephrine and serotonin from evidences, such as the symptomatic manifestation of depression and the antidepressantinduced sexual dysfunction. The authors investigates the association of norepienphrine and serotonin with psychogenic impotence. The psychogenic impotent group(PIG) consisted of twenty-three patients with psychogenic impotence and the controlled group(CG) consisted of twenty-seven patients without psychogenic impotence. PIG had no organic cause accounting for their erectile dysfunction. The Beck Depression Inventory(BDI) and the State-Trait Anxiety Inventory(STAI) were applied to each subject to assess mood, state anxiety(SA) and trait anxiety(TA). Plasma norepinephrine level from systemic blood and 5-hydroxyindoleacetic acid(HIAA) levels from 24-hours urine were measured in each subject. The mean score of BDI of PIG was significantly higher than that of CG(p=0.015). PIG had a tendency of higher TA compared with CG(p=0.054). And also SA was higher in PIG, but did not show significant difference(p=0.193). The level of norepinephrine was significantly lower in patient with psychogenic impotence(p=0.000). And the level of 24-hours urine 5-HIAA was lower in PIG but did not show significant difference(p=0.494). Although the authors did not exclude depressive disorders in PIG, the present findings suggest that psychogenic impotence might have higher depressive mood and trait anxiety, and be associated with the depletion of norepinephrine in systemic blood.

  • PDF

Effects of Serotonin on the Induction of Long-term Depression in the Rat Visual Cortex

  • Jang, Hyun-Jong;Cho, Kwang-Hyun;Park, Sung-Won;Kim, Myung-Jun;Yoon, Shin-Hee;Rhie, Duck-Joo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.14 no.5
    • /
    • pp.337-343
    • /
    • 2010
  • Long-term potentiation (LTP) and long-term depression (LTD) have both been studied as mechanisms of ocular dominance plasticity in the rat visual cortex. In a previous study, we suggested that a developmental increase in serotonin [5-hydroxytryptamine (5-HT)] might be involved in the decline of LTP, since 5-HT inhibited its induction. In the present study, to further understand the role of 5-HT in a developmental decrease in plasticity, we investigated the effect of 5-HT on the induction of LTD in the pathway from layer 4 to layer 2/3. LTD was inhibited by 5-HT ($10{\mu}M$) in 5-week-old rats. The inhibitory effect was mediated by activation of 5-$HT_2$ receptors. Since 5-HT also regulates the development of visual cortical circuits, we also investigated the role of 5-HT on the development of inhibition. The development of inhibition was retarded by chronic (2 weeks) depletion of endogenous 5-HT in 5-week-old rats, in which LTD was reinstated. These results suggest that 5-HT regulates the induction of LTD directly via activation of 5-$HT_2$ receptors and indirectly by regulating cortical development. Thus, the present study provides significant insight into the roles of 5-HT on the development of visual cortical circuits and on the age-dependent decline of long-term synaptic plasticity.

Effects of Aqueous Extract of Schizandrae Fructus on Lead-Induced Change of Monoamine Neurotransmitters in Hippocampus

  • Zhao, Rong Jie;Zhao, Zheng Lin;Zhao, Xiu Feng;Zhao, Guang Wen;Li, Meng Quan;Wu, Yi Yan;Li, Jing Qiu;Guan, Li Xin;Kim, Sang-Chan
    • Herbal Formula Science
    • /
    • v.17 no.2
    • /
    • pp.143-150
    • /
    • 2009
  • The effects of aqueous extract of Schizandrae Fructus (AESC) on lead (Pb)-induced changes of monoamine neurotransmitters in the hippocampus (HIP) of adult rats were investigated. Male Sprague-Dawley rats were received intraperitoneal (i.p.) administration of Pb acetate (5 mg/kg/d) for 28 days and sacrificed 7 days after the last administration. Concentrations of norepinephrine (NE), dopamine (DA), serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIAA) in HIP were measured by HPLC. There were significant decreases of NE, DA, 5-HT and 5-HIAA in Pb treated rats (P < 0.05), while pretreatment with AESC (100 mg/kg/d or 300 mg/kg/d, p.o., 2 h before Pb) greatly inhibited the decrease of monoamine transmitters, respectively (P < 0.05). Also, AESC (300 mg/kg/d) significantly increased the reduction of glutathione contents and superoxide dismutase activities in HIP induced by chronic Pb. These results suggest that AESC ameliorates Pb-induced depletion of monoamine neurotransmitters in HIP through its antioxidant activity.

  • PDF

Effects of Aqueous Extract of Schizandra Chinensis Fruit on Cadmium-Induced Change of Monoamine Neurotransmitters in Rats

  • Zhao, Zheng Lin;Zhao, Guang Wen;Li, Li;Li, Meng Quan;Guan, Li Xin;Yang, Xu Dong;Li, Hou Zhong;Lin, Feng;Lee, Jong-Rok;Zhao, Rong Jie
    • Toxicological Research
    • /
    • v.25 no.1
    • /
    • pp.17-21
    • /
    • 2009
  • The effects of aqueous extract of Schizandra Chinensis Fruit (AESC) on cadmium-induced changes of monoamine neurotransmitters in the different brain regions of adult rats were investigated. Male rats were received intraperitoneal (i.p.) administration of CdCl2 (0.6 mg/kg/d) for 21 days and sacrificed 7 days after the last administration. Concentrations of norepinephrine (NE), dopamine (DA) in striatum and serotonin (5-HT), 5-hydroxyindole acetic acid (5-HIAA) in cortex were measured by HPLC. There were significant decreases of NE, DA, 5-HT and 5-HIAA in Cd intoxicated rats (P < 0.05), while pretreatment with AESC (20 mg/kg/d or 60 mg/kg/d, p.o., 30 min before $CdCl_2$) greatly inhibited the decrease of monoamine transmitters, respectively (P < 0.05). Also, AESC significantly increased the reduction of glutathione contents and superoxide dismutase activities in cortex induced by $CdCl_2$. These results suggest that AESC ameliorates Cd-induced depletion of monoamine neurotransmitters in brain through its antioxidant activity.

Recent Research Progress in the Microbial Production of Aromatic Compounds Derived from L-Tryptophan (미생물을 이용한 L-트립토판 유래 방향족 화합물 생산 최근 연구)

  • Lee, Ji-yeong;Lee, Jin-ho
    • Journal of Life Science
    • /
    • v.30 no.10
    • /
    • pp.919-929
    • /
    • 2020
  • Aromatic compounds are widely used in the chemical, food, polymer, cosmetic, and pharmaceutical industries and are produced by mainly chemical synthesis using benzene, toluene, and xylene or by plant extraction methods. Due to many rising threats, including the depletion of fossil fuels, global warming, the strengthening of international environmental regulations, and the excessive harvesting of plant resources, the microbial production of aromatic compounds using renewable biomass is regarded as a promising alternative. By integrating metabolic engineering with synthetic and systems biology, artificial biosynthetic pathways have been reconstituted from L-tryptophan biosynthetic pathway in relevant microorganisms, such as Escherichia coli and Corynebacterium glutamicum, enabling the production of a variety of value-added aromatic compounds, such as 5-hydroxytryptophan, serotonin, melatonin, 7-chloro-L-tryptophan, 7-bromo-L-tryptophan, indigo, indirubin, indole-3-acetic acid, violacein, and dexoyviolacein. In this review, we summarize the characteristics, usage, and biosynthetic pathways of these aromatic compounds and highlight the latest metabolic engineering strategies for the microbial production of aromatic compounds and suitable solution strategies to overcome problems in increasing production titers. It is expected that strain development based on systems metabolic engineering and the optimization of media and bioprocesses using renewable biomass will enable the development of commercially viable technologies for the microbial production of many aromatic compounds.