• Title/Summary/Keyword: Serine

Search Result 1,376, Processing Time 0.022 seconds

cDNA Sequence and mRNA Expression of a Novel Serine Protease from the Firefly, Pyrocoelia rufa

  • Lee, Kwang-Sik;Kim, Seong-Ryul;Sohn, Hung-Dae;Jin, Byung-Rae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.5 no.1
    • /
    • pp.103-108
    • /
    • 2002
  • We describe here the cDNA sequence and mRNA expression of a novel serine pretense from the firefly, Pyrocoelia rufa. The 771 bp cDNA encodes for 257 amino acid residues. The deduced protein of P. rufa serine pretense gene contains the catalytic triad and six-conserved cysteine residues. Alignment of the deduced protein of P. rufa serine pretense gene showed 47.4% protein sequence identity to known coleopteran insect Rhyzopertha dominica midgut trpsin-like enzyme. Northern blot analysis revealed that the P. rufa serine pretense is specifically expressed in the midgut of P. rufa larvae.

Purification and Characterization of Extracellular Proteinase Produced by Pseudomonas aeruginosa (Pseudomonas aeruginosa 세포질외 serine계열 단백질 분해효소의 정제 및 특성)

  • 이은실;송철용
    • Korean Journal of Microbiology
    • /
    • v.29 no.6
    • /
    • pp.345-352
    • /
    • 1991
  • A serine proteinase of molecular weight 60 kd was purified from culture supernatant of P. aeruginosa using DEAE-Trisacryl M ion-exchange and AcA 54 gel filtration column chromatography, and the properties of serine proteinase were characterized. By means of SDS-polyacrylamide gel electrophoresis, the molecular weight of the enzyme was 55 kd. The optimal pH for the activity of purified enzyme was 7.5. The activity of the purified enzyme was completely inhibited by Di-isopropylfluorophosphate(DFP) and N-.alpha.-p-tosyl-L-lysine choloromethyl detone(TLCK) but not by other proteinase inhibitors such as E-64, pepstatin A, 1, 10-phenanthroline. The purified enzyme was capable of degrading type I and type IV collagen. Antisera obtained from hymans infected with Pseudomonas aeruginosa reacted to the purified serine proteinase in immunoblots. These results indicate that the purified enzyme is trypsin-like serine proteinase and this enzyme of P. aeruginosa may play an important role in tissue damage as a spreading factor and may be useful for serodiagnosis of Pseudomonas infections.

  • PDF

Characterization of Endopeptidase of Bacillus amyloliquefaciens S94 by Chemical Modificationtion (Bacillus amyloliquefaciens에서 분리된 단백질 가수분해 효소의 화학적 수식에 의한 저해양상 분석)

  • Kim, Jong-Il
    • Korean Journal of Microbiology
    • /
    • v.39 no.4
    • /
    • pp.230-234
    • /
    • 2003
  • An extracellular protease of Bacillus amyloliquefaciens S94 was purified to apparent homogeneity. The enzyme activity was strongly inhibited by general inhibitor for serine protease, PMSF, suggesting that the enzyme is a serine protease. The purified enzyme activity was inhibited by leucine peptidase inhibitor, bestatin, suggesting that the enzyme is a leucine endopeptidase. When the enzyme was chemically modified with PMSF, which specifically reacted with serine residue on the enzyme, the activity was eliminated. The endopeptidase activity was inhibited by the modifier which chemically modified carboxyl group of aspartate and glutamate. PLP, which would modify lysine residue, did not affect the endopepetidase activity to a greater extent. This demonstrates that serine and aspartate (or glutamate) residues of enzyme would participate in a important function of the endopeptidase activity.

Purification of Human HtrA1 Expressed in E. coli and Characterization of Its Serine Protease Activity (E. coli에서 발현된 human HtrA1 단백질의 정제와 HtrA1의 serine protease 활성 조건에 관한 연구)

  • Kim, Kyung-Hee;Kim, Sang-Soo;Kim, Goo-Young;Rhim, Hyang-Shuk
    • Journal of Life Science
    • /
    • v.16 no.7 s.80
    • /
    • pp.1133-1140
    • /
    • 2006
  • Human HtrA1 (High temperature requirement protein A1) is a homologue of the E. coli periplasmic serine protease HtrA. A recent study has demonstrated that HtrA1 is a serine protease involved in processing of insulin like growth factor binding protein (ICFBP), indicating that it serves as an important regulator of IGF activity. Additionally, several lines of evidence suggest a striking correlation between proteolytic activity of HtrA1 serine protease and the pathogenesis of several diseases; however, physiological roles of HtrA1 remain to be elucidated. We used the pGEX bacterial expression system to develop a simple and rapid method for purifying HtrA1, and the recombinant HtrA1 protein was utilized to investigate the optimal conditions in executing its proteolytic activity. The proteolytically active HtrA1 was purified to approximately 85% purity, although the yield of the recombinant HtrA1 protein was slightly low $460{\mu}g$ for 1 liter E. coli culture). Using in vitro endoproteolytic cleavage assay, we identified that the HtrA1 serine protease activity was dependent on the enzyme concentration and the incubation time and that the best reaction temperature was $42^{\circ}C$ instead of $37^{\circ}C$. We arbitrary defined one unit of proteolytic activity of the HtrA1 serine protease as 200nM of HtrA1 that cleaves half of $5{\mu}M\;of\;{\beta}-casein$ during 3 hr incubation at $37^{\circ}C$. Our study provides a method for generating useful reagents to investigate the molecular mechanisms by which HtrA1 serine protease activity contributes in regulating its physiological function and to identify natural substrates of HtrA1.

A Novel Thrombolytic and Anticoagulant Serine Protease from Polychaeta, Diopatra sugokai

  • Kim, Hye Jin;Shim, Kyou Hee;Yeon, Seung Ju;Shin, Hwa Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.2
    • /
    • pp.275-283
    • /
    • 2018
  • Ischemic stroke can result from blockage of blood vessels, forming fibrin clots in the body and causing irreparable brain damage. Remedial thrombolytic agents or anticoagulants have been studied; however, because the FDA-approved tissue plasminogen activator has low efficacy and side effects, it is necessary to develop safer and more effective treatment candidates. This study aimed at assessing the fibrinolytic and anticoagulation features of a novel serine protease extracted and purified from Diopatra sugokai, a polychaeta that inhabits tidal flats. The purified serine protease was obtained through ammonium sulfate precipitation, affinity chromatography, and ion-exchange chromatography. Its molecular size was identified via SDS-PAGE. To characterize its enzymatic activities, the protease activity at various pH and temperatures, and in the presence of various inhibitors, was measured via azocasein assay. Its fibrinolytic activity and anticoagulant effect were assessed by fibrin zymography, fibrin plate assay, and fibrinogenolytic activity assays. The novel 38 kDa serine protease had strong indirect thrombolytic activity rather than direct activity over broad pH (4-10) and temperature ($37^{\circ}C-70^{\circ}C$) ranges. In addition, the novel serine protease exhibited anticoagulant activity by degrading the ${\alpha}$-, ${\beta}$-, and ${\gamma}$-chains of fibrinogen. In addition, it did not produce cytotoxicity in endothelial cells. Therefore, this newly isolated serine protease is worthy of further investigation as a novel alkaline serine protease for thrombolytic therapy against brain ischemia.

Participation of D-serine and NR2 subunits in EphA4-mediated trigeminal neuropathic pain

  • Kim, Myung-Dong;Kim, Min-Ji;Son, Jo-Young;Kim, Yu-Mi;Ju, Jin-Sook;Ahn, Dong-Kuk
    • International Journal of Oral Biology
    • /
    • v.45 no.3
    • /
    • pp.84-91
    • /
    • 2020
  • The present study investigated the participation of D-serine and NR2 in antinociception produced by blockade of central erythropoietin-producing hepatocellular carcinoma (Eph) A4 (EphA4) signaling in rats with trigeminal neuropathic pain. Trigeminal neuropathic pain was modeled in male Sprague-Dawley rats using mal-positioned dental implants. The left mandibular second molar was extracted under anesthesia, and a miniature dental implant was placed to induce injury to the inferior alveolar nerve. Our current findings showed that nerve injury induced by malpositioned dental implants significantly produced mechanical allodynia; additionally, the inferior alveolar nerve injury increased the expression of D-serine and NR2 subunits in the ipsilateral medullary dorsal horn (trigeminal subnucleus caudalis). Intracisternal administration of EphA4-Fc, an EphA4 inhibitor, inhibited nerve injury-induced mechanical allodynia and upregulated the expression of D-serine and NR2 subunits. Moreover, intracisternal administration of D-amino acids oxidase, a D-serine inhibitor, inhibited trigeminal mechanical allodynia. These results show that D-serine and NR2 subunit pathways participate in central EphA4 signaling after an inferior alveolar nerve injury. Therefore, blockade of D-serine and NR2 subunit pathways in central EphA4 signaling provides a new therapeutic target for the treatment of trigeminal neuropathic pain.

Phosphoserine Phosphatase Promotes Lung Cancer Progression through the Dephosphorylation of IRS-1 and a Noncanonical L-Serine-Independent Pathway

  • Park, Seong-Min;Seo, Eun-Hye;Bae, Dong-Hyuck;Kim, Sung Soo;Kim, Jina;Lin, Weiwei;Kim, Kyung-Hee;Park, Jong Bae;Kim, Yong Sung;Yin, Jinlong;Kim, Seon-Young
    • Molecules and Cells
    • /
    • v.42 no.8
    • /
    • pp.604-616
    • /
    • 2019
  • Phosphoserine phosphatase (PSPH) is one of the key enzymes of the L-serine synthesis pathway. PSPH is reported to affect the progression and survival of several cancers in an L-serine synthesis-independent manner, but the mechanism remains elusive. We demonstrate that PSPH promotes lung cancer progression through a noncanonical L-serine-independent pathway. PSPH was significantly associated with the prognosis of lung cancer patients and regulated the invasion and colony formation of lung cancer cells. Interestingly, L-serine had no effect on the altered invasion and colony formation by PSPH. Upon measuring the phosphatase activity of PSPH on a serine-phosphorylated peptide, we found that PSPH dephosphorylated phospho-serine in peptide sequences. To identify the target proteins of PSPH, we analyzed the protein phosphorylation profile and the PSPH-interacting protein profile using proteomic analyses and found one putative target protein, IRS-1. Immunoprecipitation and immunoblot assays validated a specific interaction between PSPH and IRS-1 and the dephosphorylation of phospho-IRS-1 by PSPH in lung cancer cells. We suggest that the specific interaction and dephosphorylation activity of PSPH have novel therapeutic potential for lung cancer treatment, while the metabolic activity of PSPH, as a therapeutic target, is controversial.

Cloning and Characterization of TMPRSS6, a Novel Type 2 Transmembrane Serine Protease

  • Park, Tae Joo;Lee, Yong Jae;Kim, Hye Jin;Park, Hye Gyeong;Park, Woo Jin
    • Molecules and Cells
    • /
    • v.19 no.2
    • /
    • pp.223-227
    • /
    • 2005
  • We have identified TMPRSS6, a novel type 2 transmembrane serine protease. TMPRSS6 possesses all the signature motifs of the family of transmembrane serine proteases (TMPRSSs), including a transmembrane domain, an LDL receptor class A (LDLRA) domain, a scavenger receptor cysteine-rich (SRCR) domain, and a serine protease domain. The substrate specificity of TMPRSS6 is slightly different from those of other TMPRSS family members. Combined with the finding that TMPRSS6 is expressed strongly in the thyroid and weakly in the trachea, this may indicate that TMPRSS6 has a specialized role.

Rat Liver 10-formyltetrahydrofolate Dehydrogenase, Carbamoyl Phosphate Synthetase 1 and Betaine Homocysteine S-methytransferase were Co-purified on Kunitz-type Soybean Trypsin Inhibitor-coupled Sepharose CL-4B

  • Kim, Hyun-Sic;Kim, Ji-Man;Roh, Kyung-Baeg;Lee, Hyeon-Hwa;Kim, Su-Jin;Shin, Young-Hee;Lee, Bok-Luel
    • BMB Reports
    • /
    • v.40 no.4
    • /
    • pp.604-609
    • /
    • 2007
  • An Asp/His catalytic site of 10-formyltetrahydrofolate dehydrogenase (FDH) was suggested to have a similar catalytic topology with the Asp/His catalytic site of serine proteases. Many studies supported the hypothesis that serine protease inhibitors can bind and modulate the activity of serine proteases by binding to the catalytic site of serine proteases. To explore the possibility that soybean trypsin inhibitor (SBTI) can recognize catalytic sites of FDH and can make a stable complex, we carried out an SBTI-affinity column by using rat liver homogenate. Surprisingly, the Rat FDH molecule with two typical liver proteins, carbamoyl-phosphate synthetase 1 (CPS1) and betaine homocysteine S-methyltransferase (BHMT) were co-purified to homogeneity on SBTI-coupled Sepharose and Sephacryl S-200 followed by Superdex 200 FPLC columns. These three liver-specific proteins make a protein complex with 300 kDa molecular mass on the gel-filtration column chromatography in vitro. Immuno-precipitation experiments by using anti-FDH and anti-SBTI antibodies also supported the fact that FDH binds to SBTI in vitro and in vivo. These results demonstrate that the catalytic site of rat FDH has a similar structure with those of serine proteases. Also, the SBTI-affinity column will be useful for the purification of rat liver proteins such as FDH, CPS1 and BHMT.

Characterization of extracellular proteases of Aeromonas hydrophila isolated from the intestine of carp(Cyprinus carpio) (잉어(Cyprinus carpio)로부터 분리된 Aeromonas hydrophila의 extracelluar proteases 연구)

  • Lee, Jong-Kyu;Kim, Jong-Pil;Choi, Tae-Jin;Song, Young-Hwan
    • Journal of fish pathology
    • /
    • v.10 no.1
    • /
    • pp.31-38
    • /
    • 1997
  • Aeromonas hydrophila isolated from the intestine of carp produced several kinds of proteases into the medium. Inhibitor assay with the culture supernatant of A. hydrophila showed that there were major metalloproteases and minor serine proteases. Gelatin SDS-PAGE showed two proteolytic bands. One broad protease band was inhibited by metalloprotease specific inhibitor, EDTA, indicating a metalloprotease. The other was inhibited by serine protease specific inhibitor, PMSF, suggesting a serine protease. The proteolytic activities of both extracellular proteases remained on Gelatin SDS-PAGE after heating at $70^{\circ}C$ for 30 min. However, the major metalloprotease was separated into two proteolytic bands on Gelatin PAGE by gel filtration chromatography on Sephadex G-75.

  • PDF