Browse > Article
http://dx.doi.org/10.5352/JLS.2006.16.7.1133

Purification of Human HtrA1 Expressed in E. coli and Characterization of Its Serine Protease Activity  

Kim, Kyung-Hee (Department of Biomedical Sciences, College of Medicine, the Catholic University of Korea)
Kim, Sang-Soo (Department of Biomedical Sciences, College of Medicine, the Catholic University of Korea)
Kim, Goo-Young (Department of Biomedical Sciences, College of Medicine, the Catholic University of Korea)
Rhim, Hyang-Shuk (Department of Biomedical Sciences, College of Medicine, the Catholic University of Korea)
Publication Information
Journal of Life Science / v.16, no.7, 2006 , pp. 1133-1140 More about this Journal
Abstract
Human HtrA1 (High temperature requirement protein A1) is a homologue of the E. coli periplasmic serine protease HtrA. A recent study has demonstrated that HtrA1 is a serine protease involved in processing of insulin like growth factor binding protein (ICFBP), indicating that it serves as an important regulator of IGF activity. Additionally, several lines of evidence suggest a striking correlation between proteolytic activity of HtrA1 serine protease and the pathogenesis of several diseases; however, physiological roles of HtrA1 remain to be elucidated. We used the pGEX bacterial expression system to develop a simple and rapid method for purifying HtrA1, and the recombinant HtrA1 protein was utilized to investigate the optimal conditions in executing its proteolytic activity. The proteolytically active HtrA1 was purified to approximately 85% purity, although the yield of the recombinant HtrA1 protein was slightly low $460{\mu}g$ for 1 liter E. coli culture). Using in vitro endoproteolytic cleavage assay, we identified that the HtrA1 serine protease activity was dependent on the enzyme concentration and the incubation time and that the best reaction temperature was $42^{\circ}C$ instead of $37^{\circ}C$. We arbitrary defined one unit of proteolytic activity of the HtrA1 serine protease as 200nM of HtrA1 that cleaves half of $5{\mu}M\;of\;{\beta}-casein$ during 3 hr incubation at $37^{\circ}C$. Our study provides a method for generating useful reagents to investigate the molecular mechanisms by which HtrA1 serine protease activity contributes in regulating its physiological function and to identify natural substrates of HtrA1.
Keywords
HtrA1; GST fusion system; expression and purification conditions; serine protease activity;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Spiess C, A. Beil, M. Ehrmann. 1999. A temperature-dependent switch from chaperone to protease in widely conserved heat shock protein. Cell 37, 339-347
2 Suzuki Y, Y. Imai, H. Nakayama, K. Takahashi, K. Takio, R. Takahashi. 2001. A serine protease, HtrA2, is released from the mitochondria and interacts with XIAP, inducing cell death. Mol. Cell 8, 613-621   DOI   ScienceOn
3 Tushiya A, M. Yano, J. Tocharus, H. Kojima, M. Fukumoto, M. Kawaichi, C. Oka. 2005. Expression of mouse HtrA1 serine protease in normal bone and cartilage and its upregulation in joint cartilage damaged by experimental arthritis. Bone 37, 323-336   DOI   ScienceOn
4 Zhang X, Z. Chang. 2004. Temperature dependent protease activity and structural properties of human HtrA2 protease. Biochemistry (Mosc) 69, 687-692   DOI
5 Hu SI, M. Carozza, M. Klein, P. Nantermet, D. Luk, R. M. Crowl. 1998. Human HtrA, an evolutionarily conserved serine protease identified as a differentially expressed gene product in osteoarthritic catilage. J. Biol. Chem. 273, 34406-34412   DOI   ScienceOn
6 Kim S. S., K. H. Kim, H. J. Park, E. H. Hur and H. Rhim. 2005. Inhibitory Effect if the N-terminal GST on the Tautomerase Activity of Macrophage Migration Inhibitory Factor. Journal of Life Science 6, 961-967   과학기술학회마을   DOI   ScienceOn
7 Cilenti. L., M. M. Soundarapandian, G. A. Kyriazis, V. Stratico, S. Singh, S. Gupta, J. V. Bonventre, E. S. Alnernri, A. S. Zervos. 2004. Regulation of HAX-1 Anti-apoptotic Protein by Omi/HtrA2 Protease during Cell Death. J. BioI. Chem. 279, 50295-50301   DOI   ScienceOn
8 Srinivasula. S. M., S. Gupta, P. Datta, Z. Zhang, R. Hegde, N. Cheong, T. Fernandes-Alnernri, E. S. Alnernri. 2003. Inhibitor of Apoptosis Proteins Are Substrates for the Mitochondrial Serine Protease Omi/HtrA2. J. Biol. Chem. 278, 31469-31472   DOI   ScienceOn
9 Kim G. Y., S. S. Kim, H. J. Park. and H. Rhim. 2005. Expression of human SOD1 and mutant SOD1 (G93A) in E. coli and identification of SOD1 as a substrate of HtrA2 serine protease. Journal of Life Science 16, 716-722   과학기술학회마을   DOI   ScienceOn
10 Trencia. A., F. Fiory, M. A. Maitan, P. Vito, A. P. M. Barbagallo, A. Perfetti, C. Miele, P. Ungaro, F. Oriente, L. Cilenti, A. S. Zervos, P. Formisano, F. Beguinot. 2004. Omi/HtrA2 Promotes Cell Death by Binding and Degrading the Anti-apoptotic Protein ped/pea-15. J. Biol. Chem. 279, 46566-46572   DOI   ScienceOn
11 S. C. Cary, T. Shank, J. Stein. 1998. Worms bask in the extreme temperatures. Nature 391, 545-546   DOI   ScienceOn
12 Nam M. K., H. M. Park, J. Y. Choi, H. J. Park, K. C. Chung, S. Kang and H. Rhim. 2005. The Expression Patterns of Human Parkin in E. coli and Mammalian Cells. Journal of Life Science 6, 916-922   과학기술학회마을   DOI   ScienceOn
13 Park H. J., S. S. Kim, Y. M. Seong, K. H. Kim, H. G. Goo, E. J. Yoon, D. S. Min, S. Kang, H. Rhim. 2006. Beta-amyloid precursor protein is a direct cleavage target of HtrA2 serine protease: Implications for the physiological function of HtrA2 in the mitochondria. J. Biol. Chem. 281, 34277-34287   DOI   ScienceOn
14 Park H. J., Y. M. Seong, J. Y. Choi, S. Kang, H. Rhim. 2004. Alzheimer's disease-associated amyloid beta interacts with the human serine protease HtrA2/Omi. Neurosci. Lett. 357, 63-67   DOI   ScienceOn
15 Seong Y. M., C. Han, J. Y. Choi, H. J. Park, G. H. Seong, M. K Nam, S. S. Kim, I. K. Kim, S. Kang, Rhim H. 2003. High-level Expression of Human Procaspase-9 in Escherichia coli and Purification of its GST-tagged Recombinant Protein. Kor. J. Microbiol. 39, 216-222   과학기술학회마을
16 Chien J, J. Staub, SI. Hu, M. R. Erickson-Johnson, F. J. Crouch, D. I. Smith, R. M. Crowl, S. H. Kaufmann, V. Shridhar. 2004. A candidate tumor suppressor HtrA1 is downregulated in ovarian cancer. Oncogene 23, 1636-1644   DOI   ScienceOn
17 Seong Y. M., H. J. Park, G. H. Seong, J. Y. Choi, S. J. Yoon, B. R. Min, S. Kang, H. Rhim. 2004. N-terminal truncation circumvents proteolytic degradation of the human HtrA2/Omi serine protease in Escherichia coli: rapid purification of a proteolytically active HtrA2/Omi. Protein Expr. Purif. 33, 200-208   DOI   ScienceOn
18 Seong Y. M., J. Y. Choi, H. J. Park, K. J. Kim, S. G. Ahn, G. H. Seong, I. K. Kim, S. Kang, H. Rhim. 2004. Autocatalytic processing of HtrA2/Omi is essential for induction of caspase-dependent cell death through antagonizing XIAP. J. Biol. Chem. 279, 37588-37596   DOI   ScienceOn
19 Baldi A, A. De Luca, M. Morini, T. Battista, A. Felsani , F. Baldi, C. Catricala, A. Amantea, D. M. Noonan, A. Albini, P. G. Natali, D. Lombardi, M. G. Paggi. 2002. The HtrA1 serine protease is down-regulated during human melanoma progression and represses growth of metastatic melanoma cells. Oncogene 21, 6684-6688   DOI   ScienceOn
20 Clausen T, C. Southan, M. Ehrmann. 2002. The HtrA family of proteases: implications for protein composition and cell fate. Mol. Cell 10, 443-455   DOI   ScienceOn
21 Grau S, A. Baldi, R. Bussani, X. Tian, R. Stefanescu, M. Przybylski, P. Richards, S. A. Jones, V. Shridhar, T. Clausen, M. Ehrmann. 2005. Implications of the serine protease HtrA1 in amyloid precursor protein processing. Proc. Natl. Acad. Sci. U. S. A. 102, 6021-6026   DOI   ScienceOn
22 Grau S, P. J. Richards, C. Hughes, B. Caterson, A. S. Williams, U. Junker, S. A. Jones, T. Clausen, M. Ehrmann. 2006. The role of human HtrA1 in arthritic disease. J. Biol. Chem. 281, 6124-6129   DOI   ScienceOn
23 David L. Nelson and Michael M. Cox. 2000. Lehninger Principles of Biochemistry. pp. 243-269, 3rd eds., Worth Publishers. 41 Madison Avenue, New York
24 Sekine. K, Y. Hao, Y. Suzuki, R. Takahashi, T. Tsuruo, M. Naito. 2005. HtrA2 cleaves Apollon and induces cell death by lAP-binding motif in Apollon-deficient cells. Biochem. Biophys. Res. Commun. 330, 279-285   DOI   ScienceOn