• 제목/요약/키워드: Series Operation

검색결과 1,271건 처리시간 0.025초

Pulse Density Modulation Controlled Series Load Resonant Zero Current Soft Switching High Frequency Inverter for Induction-Heated Fixing Roller

  • Sugimura, Hisayuki;Kang, Ju-Sung;Saha, Bishwajit;Lee, Hyun-Woo;Nakaoka, Mutsuo
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2006년도 춘계학술대회 논문집 전기기기 및 에너지변환시스템부문
    • /
    • pp.226-228
    • /
    • 2006
  • This paper presents the two lossless auxiliary inducors-assisted voltage source type half bridge(single ended push pull:SEPP) series resonant high frequency inverter for induction heated fixing roller in copy and printing machines. The simple high-frequency inverter treated here can completely achieve stable zero current soft switching (ZCS) commutation forwide its output power regulation ranges and load variations under constant high frequency pulse density modulation (PDM) scheme. Its transient and steady state operatprinciple is originally described and discussed for a constant high-frequency PDM control strategy under a stable ZCS operation commutation, together with its output effective power regulation charactertics-based on the high frequency PDM strategy. The experimenoperating performances of this voltage source SEPP ZCS-PDM series resonant high frequency inverter using IGBTs are illustrated as compared with computer simulation results and experimenones. Its power losses analysis and actual efficiency are evaluated and discussed on the basis of simulation and experimental results. The feasible effectiveness of this high frequency inverter appliimplemented here is proved from the practical point of view.

  • PDF

직렬 연결된 GTO로 구성된 멀티레벨 인버터에 적합한 새로운 회생 스너버에 관한 연구 (A Novel Regenerative Snubber suitable to Multi-Level Inverters with Series-Connected GTOs)

  • 채균;조국춘;정구호;류태하;조규형
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 A
    • /
    • pp.585-587
    • /
    • 1996
  • A simple regenerative snubber structure is proposed, which is applicable to multi-level inverter with series-connected GTOs for high power applications. The novel snubber structure can solve large energy loss problems and guarantee safe operation of power converter can be achieved. The proposed new snubber has the potential of high performance and high reliability and is particularly suitable to high power and multi-level application with series connected power devices. The snubber voltage and current waveforms are analized and shown the simulation and experimental results for a GTO 3-level inverter circuit with inductive load.

  • PDF

전압 고조파를 고려한 역률보상용 콘덴서의 특성 분석 (Characteristic Analysis of Power Compensation Condenser Considering Voltage Harmonics)

  • 김종겸;이동주
    • 전기학회논문지P
    • /
    • 제59권2호
    • /
    • pp.141-145
    • /
    • 2010
  • Most of the industrial loads includes the non-linear load as well as the linear load because there are many kinds of power conversion equipments at the input stage of the load in distribution network. The non-linear load causes the distortion of voltage waveform at PCC because the non-linear load generates the harmonic current. As a result, various voltage harmonics are existed at PCC depending on the current harmonics from the non-linear load. And, a series reactor is generally connected to the power capacitor in series to attenuate the distortion of voltage waveform and to reduce an inrush current of power capacitor. Also, harmonic current of power capacitor is highly dependent on the series reactor because it is operated with the power capacitor as a passive filter against nonlinear loads. Then, these capacitors might be damaged by the excessive voltage and current harmonic components. In this paper, we presented how to select the capacitor and series reactor to meet the requirement of the voltage distortion at PCC and analyzed the voltage, current and capacity rating of the power capacitor by the computer simulation to ensure the safe operation of power capacitor when the voltage harmonics at PCC are existed. Also, the analysis data were compared with the experimental measurements for the verification.

A High Gain and High Harmonic Rejection LNA Using High Q Series Resonance Technique for SDR Receiver

  • Kim, Byungjoon;Kim, Duksoo;Nam, Sangwook
    • Journal of electromagnetic engineering and science
    • /
    • 제14권2호
    • /
    • pp.47-53
    • /
    • 2014
  • This paper presents a high gain and high harmonic rejection low-noise amplifier (LNA) for software-defined radio receiver. This LNA exploits the high quality factor (Q) series resonance technique. High Q series resonance can amplify the in-band signal voltage and attenuate the out-band signals. This is achieved by a source impedance transformation. This technique does not consume power and can easily support multiband operation. The chip is fabricated in a $0.13-{\mu}m$ CMOS. It supports four bands (640, 710, 830, and 1,070MHz). The measured forward gain ($S_{21}$) is between 12.1 and 17.4 dB and the noise figure is between 2.7 and 3.3 dB. The IIP3 measures between -5.7 and -10.8 dBm, and the third harmonic rejection ratios are more than 30 dB. The LNA consumes 9.6 mW from a 1.2-V supply.

Status of Korean Research Activity on Arctic Sea Ice Monitoring using KOMPSAT-series Satellite

  • Kim, Hyun-cheol;Chae, Tae-Byeong
    • 한국지구과학회지
    • /
    • 제40권4호
    • /
    • pp.329-339
    • /
    • 2019
  • Arctic warming is a global issue. The sea ice in the Arctic plays a crucial role in the climate system. We thought that a recent abnormality in many countries in the northern hemisphere could be related to the effects of shrinking sea ice in the Arctic. Many research groups monitor sea ice in the Arctic for climate research. Satellite remote sensing is an integral part of Arctic sea ice research due to the Arctic's large size, making it difficult to observe with general research equipment, and its extreme environment that is difficult for humans to access. Along with monitoring recent weather changes, Korea scientists are conducting polar remote sensing using a Korean satellite series to actively cope with environmental changes in the Arctic. The Korean satellite series is known as KOMPSAT (Korea Multi-Purpose Satellite, Korean name is Arirang) series, and it carries optical and imaging radar. Since the organization of the Satellite Remote Sensing and Cryosphere Information Center in Korea in 2016, Korean research on and monitoring of Arctic sea ice has accelerated rapidly. Moreover, a community of researchers studying Arctic sea ice by satellite remote sensing increased in Korea. In this article, we review advances in Korea's remote sensing research for the polar cryosphere over the last several years. In addition to satellite remote sensing, interdisciplinary studies are needed to resolve the current limitations on research on climate change.

Solar radiation forecasting using boosting decision tree and recurrent neural networks

  • Hyojeoung, Kim;Sujin, Park;Sahm, Kim
    • Communications for Statistical Applications and Methods
    • /
    • 제29권6호
    • /
    • pp.709-719
    • /
    • 2022
  • Recently, as the importance of environmental protection has emerged, interest in new and renewable energy is also increasing worldwide. In particular, the solar energy sector accounts for the highest production rate among new and renewable energy in Korea due to its infinite resources, easy installation and maintenance, and eco-friendly characteristics such as low noise emission levels and less pollutants during power generation. However, although climate prediction is essential since solar power is affected by weather and climate change, solar radiation, which is closely related to solar power, is not currently forecasted by the Korea Meteorological Administration. Solar radiation prediction can be the basis for establishing a reasonable new and renewable energy operation plan, and it is very important because it can be used not only in solar power but also in other fields such as power consumption prediction. Therefore, this study was conducted for the purpose of improving the accuracy of solar radiation. Solar radiation was predicted by a total of three weather variables, temperature, humidity, and cloudiness, and solar radiation outside the atmosphere, and the results were compared using various models. The CatBoost model was best obtained by fitting and comparing the Boosting series (XGB, CatBoost) and RNN series (Simple RNN, LSTM, GRU) models. In addition, the results were further improved through Time series cross-validation.

8200호대 전기기관차 보조전원장치 개발품의 신뢰도 기반 수명주기비용 분석 (Life Cycle Cost Analysis of Auxiliary Power Unit Developments for 8200 Series Electric Locomotive Based on Reliability)

  • 이계승;김완일;창윤우;김재문
    • 전기학회논문지
    • /
    • 제67권11호
    • /
    • pp.1523-1529
    • /
    • 2018
  • Electric vehicles that are currently in operation are being produced domestically. Therefore, there is no great difficulty in receiving or repairing the failed parts or in the overall repair. On the other hand, most of the electric locomotives are manufactured by introducing the parts and technology of foreign vehicle manufacturers. In this paper, conducted a study about life cycle cost analysis of developed auxiliary power unit in 8200 series electric locomotive and suggested cost down method. This confirms the economic benefits of the developed products of the auxiliary power supply compared to the existing products. In addition, a sensitivity analysis of MTBF was conducted to suggest a life cycle cost down method.

Hybrid thermal seasonal storage and solar assisted geothermal heat pump systems for greenhouses

  • Ataei, Abtin;Hemmatabady, Hoofar;Nobakht, Seyed Yahya
    • Advances in Energy Research
    • /
    • 제4권1호
    • /
    • pp.87-106
    • /
    • 2016
  • In this research, optimum design of the combined solar collector, geothermal heat pump and thermal seasonal storage system for heating and cooling a sample greenhouse is studied. In order to optimize the system from technical point of view some new control strategies and functions resulting from important TRNSYS output diagrams are presented. Temperatures of ground, rock bed storage, outlet ground heat exchanger fluid and entering fluid to the evaporator specify our strategies. Optimal heat storage is done with maximum efficiency and minimum loss. Mean seasonal heating and cooling COPs of 4.92 and 7.14 are achieved in series mode as there is no need to start the heat pump sometimes. Furthermore, optimal parallel operation of the storage and the heat pump is studied by applying the same control strategies. Although the aforementioned system has higher mean seasonal heating and cooling COPs (4.96 and 7.18 respectively) and lower initial cost, it requires higher amounts of auxiliary energy either. Soil temperature around ground heat exchanger will also increase up to $1.5^{\circ}C$ after 2 years of operation as a result of seasonal storage. At the end, the optimum combined system is chosen by trade-off between technical and economic issues.

Steady-State Analysis of ZVS and NON-ZVS Full-Bridge Inverters with Asymmetrical Control for Induction Heating Applications

  • Yachiangkam, Samart;Sangswang, Anawach;Naetiladdanon, Sumate;Koompai, Chayant;Chudjuarjeen, Saichol
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.544-554
    • /
    • 2015
  • This paper presents a steady-state operation analysis of full-bridge series-resonant inverters focusing on the distorted load current due to low-quality-factor resonant circuits in induction heating and other applications. The regions of operation based on the zero-voltage switching (ZVS) and non-zero-voltage switching (NON-ZVS) operations of the asymmetrical voltage-cancellation control technique are identified. The effects of a distorted load current under a wide range of output powers are also analyzed for achieving a precise ZVS operating region. An experimental study is performed with a 1kW prototype. Simulation and experimental studies have confirmed the validity of the proposed method. An efficiency comparison between the variable frequency method and the conventional fixed-frequency method is provided.

Analysis and Implementation of LC Series Resonant Converter with Secondary Side Clamp Diodes under DCM Operation for High Step-Up Applications

  • Jia, Pengyu;Yuan, Yiqin
    • Journal of Power Electronics
    • /
    • 제19권2호
    • /
    • pp.363-379
    • /
    • 2019
  • Resonant converters have attracted a lot of attention because of their high efficiency due to the soft-switching performance. An isolated high step-up converter with secondary-side resonant loops is proposed and analyzed in this paper. By placing the resonant loops on the secondary side, the current stress for the resonant capacitors is greatly reduced. The power loss caused by the equivalent series resistance of the resonant capacitor is also decreased. Clamp diodes in parallel with the resonant capacitors ensure a unique discontinuous current mode in the converter. Under this mode, the active switches can realize soft-switching during both turn-on and turn-off transitions. Meanwhile, the reverse-recovery problems of diodes are also alleviated by the leakage inductor. The converter is essentially a step-up converter. Therefore, it is helpful for decreasing the transformer turn-ratio when it is applied as a high step-up converter. The steady-state operation principle is analyzed in detail and design considerations are presented in this paper. Theoretical conclusions are verified by experimental results obtained from a 500W prototype with a 35V-42V input and a 400V output.