Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.2.544

Steady-State Analysis of ZVS and NON-ZVS Full-Bridge Inverters with Asymmetrical Control for Induction Heating Applications  

Yachiangkam, Samart (Department of Electrical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi)
Sangswang, Anawach (Department of Electrical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi)
Naetiladdanon, Sumate (Department of Electrical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi)
Koompai, Chayant (Department of Electrical Engineering, Faculty of Engineering, King Mongkut's University of Technology Thonburi)
Chudjuarjeen, Saichol (Department of Electrical and Telecommunication Engineering, Faculty of Engineering, Rajamangala University of Technology Krungthep)
Publication Information
Journal of Power Electronics / v.15, no.2, 2015 , pp. 544-554 More about this Journal
Abstract
This paper presents a steady-state operation analysis of full-bridge series-resonant inverters focusing on the distorted load current due to low-quality-factor resonant circuits in induction heating and other applications. The regions of operation based on the zero-voltage switching (ZVS) and non-zero-voltage switching (NON-ZVS) operations of the asymmetrical voltage-cancellation control technique are identified. The effects of a distorted load current under a wide range of output powers are also analyzed for achieving a precise ZVS operating region. An experimental study is performed with a 1kW prototype. Simulation and experimental studies have confirmed the validity of the proposed method. An efficiency comparison between the variable frequency method and the conventional fixed-frequency method is provided.
Keywords
Asymmetrical voltage-cancellation; Induction heating; Non-zero- voltage switching; Series-resonant inverter; Zero-voltage switching;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 P. Viriya, N. Yongyuth, and K. Matsuse, “Analysis of two continuous control regions of conventional phase shift and transition phase shift for induction heating inverter under ZVS and NON-ZVS operation,” IEEE Trans. Power Electron., Vol. 23, No. 6, pp. 2794-2805, Nov. 2008.   DOI   ScienceOn
2 J. M. Burdio, L. A. Barragan, F. Monterde, D. Navarro, and J. Acero, “Asymmetrical voltage-cancelation control for full-bridge series resonant inverters,” IEEE Trans. Power Electron., Vol. 19, No. 2, pp. 461-469, Mar. 2004.   DOI   ScienceOn
3 L. A. Barragan, J. M. Burdio, J. A. Artigas, D. Navarro, J. Acero, and D. Puyal, “Efficiency optimization in ZVS series resonant inverter with asymmetrical voltage-cancelation control,” IEEE Trans. Power Electron., Vol. 20, No. 5, pp. 1036-1044, Sep. 2005.   DOI   ScienceOn
4 S. Chudjuarjeen, A. Sangswang, and C. Koompai, “An improved LLC resonant inverter for induction heating applications with asymmetrical control,” IEEE Trans. Ind. Electron., Vol. 58, No. 7, pp. 2915-2925, Jul. 2011.   DOI   ScienceOn
5 P. Viriya, S. Sittichok, and K. Matsuse, “Analysis of high-frequency induction cooker with variable frequency power control,” in Proc. PCC, Vol.3, pp. 1502-1507, 2002.
6 S. S. Lee, S. K. Han, and G. W. Moon, “A new high efficiency half bridge converter with improved ZVS performance,” Journal of Power Electron., Vol. 6, No. 3, pp. 187-194, Jul. 2006.
7 E. H. Kim and B. H. Kwon, “Zero-voltage- and zerocurrent-switching full-bridge converter with secondary resonance,” IEEE Trans. Ind. Electron., Vol. 57, No. 3, pp. 1017-1025, Mar. 2010.   DOI   ScienceOn
8 Y. Kwon, S. B. Yoo, and D. S. Hyun, “Half-bridge series resonant inverter for induction heating applications with load-adaptive PFM control strategy,” in Proc. APEC, vol. 1, pp.575-581, 1991.
9 L. A. Barragan, D. Navarro, J. Acero, I. Urriza, and J. M. Burdio, “FPGA implementation of a switching frequency modulation circuit for EMI reduction in resonant inverter for induction heating applications,” IEEE Trans. Ind. Electron., Vol. 55, No. 1, pp. 11-20, Jan. 2008.   DOI   ScienceOn
10 H. Fujita and H. Akagi, “Pulse-density-modulated power control of a 4kW, 450kHz voltage-source inverter for induction melting applications,” IEEE Trans. Ind. Applicat., Vol.32, No.2, pp. 279-286, Mar./Apr. 1996.   DOI   ScienceOn
11 N. J. Park, D. Y. Lee, and D. S. Hyun, “A power-control scheme with constant switching frequency in class-D inverter for induction-heating jar application,” IEEE Trans. Ind. Electron., Vol.54, No.3, pp. 1252-1260, Jun. 2007.   DOI   ScienceOn
12 F. Forest, S. Faucher, J. Y. Gaspard, D. Montloup, J. J. Huselstein, and C. Joubert, “Frequency-synchronized resonant converters for the supply of multiwindings coils in induction cooking appliances,” IEEE Trans. Ind. Electron., Vol. 54, No. 1, pp. 441-452, Feb. 2007.   DOI   ScienceOn
13 Q. Zhang, H. Hu, D. Zhang, X. Fang, J. Shen, and I. Bartarseh, “A controlled-type ZVS technique without auxiliary components for the low power DC/AC inverter,” IEEE Trans. Power Electron., Vol. 28, No. 7, pp. 3287-3296, Jul. 2013.   DOI   ScienceOn
14 H. Sugimura, H. Muraoka, T. Ahmed, S. Chandhaket, E. Hiraki, M. Nakaoka, and H. W. Lee, “Dual mode phaseshifted ZVS-PWM series load resonant high-frequency inverter for induction heating super heated steamer,” Journal of Power Electronics, Vol. 4, No. 3, pp. 138-151, Jul. 2004.
15 J. K. Eom, J. G. Kim, J. H. Kim, S. T. Oh, Y. C. Jung, and C. Y. Won, “Analysis of a novel soft switching bidirectional DC-DC converter,” Journal of Power Electronics, Vol. 12, No. 6, pp. 859-868, Nov. 2012.   DOI   ScienceOn
16 S. Y. R. Hui, E. S. Gogani, and J. Zhang, “Analysis of a quasi-resonant circuit for soft-switching inverters,” IEEE Trans. Power Electron., Vol. 11, No. 1, pp. 106-114, Jan. 1996.   DOI   ScienceOn
17 Z. F. Ming and M. C. Zhon, “Impact of zero-voltage notches on output of soft-switching pulse width modulation converters,” IEEE Trans. Ind. Electron., Vol. 58, No. 6, pp. 2345-2354, Jun. 2011.   DOI   ScienceOn
18 S. J. Jeon and G. H. Cho, “A zero-voltage and zero-current switching full bridge DC-DC converter with transformer isolation,” IEEE Trans. Power Electron., Vol.16, No.5, pp. 573-580, Sep. 2001.   DOI   ScienceOn
19 T. Mishima and M. Nakaoka, “A load-power adaptive dual pulse modulated current phasor-controlled ZVS highfrequency resonant inverter for induction heating applications,” IEEE Trans. Power Electron., Vol. 29, No. 8, pp. 3864-3880, Aug. 2014.   DOI   ScienceOn
20 F. Z. Peng, G. J. Su, and L. M. Tolbert, “A passive soft-switching snubber for PWM inverters,” IEEE Trans. Power Electron., Vol. 19, No. 2, pp. 363-370, Mar. 2004.   DOI   ScienceOn
21 O. Lucia, J. M. Burdio, I. Millan, J. Acero, and L. A. Barragan, “Efficiency-oriented design of ZVS half-bridge series resonant inverter with variable frequency duty cycle control,” IEEE Trans. Power Electron., Vol. 25, No. 7, pp. 1671-1674, Jul. 2010.   DOI   ScienceOn
22 J. Jittakort, S. Yachiangkam, A. Sangswang, S. Naetiladdanon, C. Koompai, and S. Chudjuarjeen, “A variable-frequency asymmetrical voltage-cancellation control of series resonant inverter in domestic induction cooking,” in Proc. ICPE2011-ECCE Asia, pp. 2320-2327, 2011.
23 M. K. Kazimierczuk and D. Czarkowski, Resonant Power Converters, John Wiley & Sons, Chap. 6, 2011.
24 V. Esteve, J. Jordan, E. S. Kilders, E. J. Dede, E. Maset, J. B. Ejea, and A. Ferreres, “Improving the reliability of series resonant inverter for induction heating applications,” IEEE Trans. Ind. Electron., Vol. 61, No. 5, pp. 2564-2572, May. 2014.   DOI   ScienceOn
25 L. Grajales and F.C. Lee, “Control system design and small-signal analysis of a phase-shift controlled series-resonant inverter for induction heating,” in Proc. PESC, pp. 450-456, 1995.