• Title/Summary/Keyword: Series Capacitor

Search Result 427, Processing Time 0.023 seconds

A High-Efficiency High-Power Step-Up Converter with Low Ripple Content

  • Kang Jeong-il;Roh Chung-Wook;Moon Gun-Woo;Youn Myung-Joong
    • Proceedings of the KIPE Conference
    • /
    • 2001.10a
    • /
    • pp.708-712
    • /
    • 2001
  • A new phase-shifted parallel-input/series-output (PI SO) dual inductor-fed push-pull converter for high-power step­up applications is proposed. This converter is operated at a constant duty cycle and employs an auxiliary circuit to control the output voltage with a phase-shift between the two modules. It features a voltage conversion characteristic which is linear to changes in the control input, and high step-up ratio with a greatly reduced switch turn-off stress resulting in a significant increase in the converter efficiency. It also shows a low ripple content and low root-mean-square (RMS) current in the output capacitor. The operational principle is analyzed and a comparative analysis with the conventional pulse-width-modulated (PWM) PISO dual inductor-fed push-pull converter is presented. A 50kHz, 800W, 350Vdc prototype with an input of 20-32Vdc has also been constructed to validate the proposed converter. The proposed converter compares favorably with the conventional counterpart and is considered well suited to high-power step-up applications.

  • PDF

Symmetrical Scanning Leaky Wave Antenaa Using Double Negative and Double Positive Transmission Line (Double Negative, Positive 전승 선로를 이용한 대칭적적인 주파수 스캐닝 누설파 안테나)

  • 이재곤;이정해
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.11
    • /
    • pp.1069-1074
    • /
    • 2004
  • In this paper, we have designed artificial double negative(DNG) transmission line composed of series inter-digital capacitor and two shunt inductive short stubs. This artificial DNG transmission line has the property of double positive (DPS) transmission line over some frequency ranges due to RF nature. In detail, this transmission line simultaneously has the contrary properties of DNG and DPS transmission line depending on operation frequency. DPS/DNG transmission line at leaky region is utilized to design frequency scanning antenna with backfire-to-endfire. We have simulated and measured the dispersion and for-field radiation beam patterns of symmetrical leaky wave antenna. The results show rough agreement.

The operational characteristics of the AT Forward Multi-Resonant Converter (AT 포워드 다중 공진형 컨버터의 동작 특성)

  • 김창선
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.12 no.3
    • /
    • pp.114-123
    • /
    • 1998
  • The multi-resonant converter(MRC) minimizes a parasitic oscillation by using the resonant tank circuit absorbed parasitic reactances existing in a converter circuit. So it si possible that the converter operated at a high frequency has a high efficiency because the losses are reduced. Such a MHz high frequency applications provide a high power density [W/inch3] of the converter. But the resonant voltage stress across a switch of the resonant tank circuit is 4~5 times a input voltage. This h호 voltage stress increases the conduction loss because of on-resistance of a MOSFET with higher rating. Thus, in this paper we proposed the alternated multi-resonant converter (AT MRC) differ from the clamp mode multi-resonant converter and applicated it to the forward MRC. The AT forward MRC can reduce the voltage stress to 2~3 times a input voltage by using two series input capacitor. The control circuit is simple because tow resonant switches are driven directly by the output pulse of the voltage controled oscillator. This circuit type is verified through the experimental converter with 48V input voltage, 5V/50W output voltage/power and PSpice simulation. the measured maximum voltage stress is 170V of 2.9 times the input voltage and the maximum efficiency of 81.66% is measured.

  • PDF

Development of Boost Type Bidirectional DC/DC Converter with High Efficiency For EV using an Interleave Method (인터리브 방식을 이용한 전기자동차용 고효율 승압형 양방향 DC/DC 컨버터 개발)

  • Choi, Jung-Sik;Oh, Seung-Yeol;Chung, Dong-Hwa;Song, Sung-Gun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.10
    • /
    • pp.59-68
    • /
    • 2013
  • This paper proposes the boost type bidirectional DC/DC converter with high efficiency for electric vehicle using an interleave method. This interleave method can reduce the system size because it reduces the ripple of output voltage and input current with no add to extra filter. Proposed system is consist of two converters and applies to interleaved method through phase shift to each converter. And it implements the high boost through voltage double and series construction of output port. Also, it reduces the price and increases the efficiency as operating the ZCS by leakage inductance of transformer and capacitor of voltage double with not add special reactor. Proposed DC/DC converter using interleave method is proved the validity through the result of PSIM simulation and experiment of 5kW DC/DC converter.

A Parallel Hybrid Soft Switching Converter with Low Circulating Current Losses and a Low Current Ripple

  • Lin, Bor-Ren;Chen, Jia-Sheng
    • Journal of Power Electronics
    • /
    • v.15 no.6
    • /
    • pp.1429-1437
    • /
    • 2015
  • A new parallel hybrid soft switching converter with low circulating current losses during the freewheeling state and a low output current ripple is presented in this paper. Two circuit modules are connected in parallel using the interleaved pulse-width modulation scheme to provide more power to the output load and to reduce the output current ripple. Each circuit module includes a three-level converter and a half-bridge converter sharing the same lagging-leg switches. A resonant capacitor is adopted on the primary side of the three-level converter to reduce the circulating current to zero in the freewheeling state. Thus, the high circulating current loss in conventional three-level converters is alleviated. A half-bridge converter is adopted to extend the ZVS range. Therefore, the lagging-leg switches can be turned on under zero voltage switching from light load to full load conditions. The secondary windings of the two converters are connected in series so that the rectified voltage is positive instead of zero during the freewheeling interval. Hence, the output inductance of the three-level converter can be reduced. The circuit configuration, operation principles and circuit characteristics are presented in detail. Experiments based on a 1920W prototype are provided to verify the effectiveness of the proposed converter.

A Novel DC Bus Voltage Balancing of Cascaded H-Bridge Converters in D-SSSC Application

  • Saradarzadeh, Mehdi;Farhangi, Shahrokh;Schanen, Jean-Luc;Frey, David;Jeannin, Pierre-Olivier
    • Journal of Power Electronics
    • /
    • v.12 no.4
    • /
    • pp.567-577
    • /
    • 2012
  • This paper introduces a new scheme to balance the DC bus voltages of a cascaded H-bridge converter which is used as a Distribution Static Synchronous Series Compensator (D-SSSC) in electrical distribution network. The aim of D-SSSC is to control the power flow between two feeders from different substations. As a result of different cell losses and capacitors tolerance the cells DC bus voltage can deviate from their reference values. In the proposed scheme, by individually modifying the reference PWM signal for each cell, an effective balancing procedure is derived. The new balancing procedure needs only the line current sign and is independent of the main control strategy, which controls the total DC bus voltages of cascaded H-bridge. The effect of modulation index variation on the capacitor voltage is analytically derived for the proposed strategy. The proposed method takes advantages of phase shift carrier based modulation and can be applied for a cascaded H-bridge with any number of cells. Also the system is immune to loss of one cell and the presented procedure can keep balancing between the remaining cells. Simulation studies and experimental results validate the effectiveness of the proposed method in the balancing of DC bus voltages.

Design of Fuzzy Controller for Firing Angle of TCSC Using Tabu Search (Tabu Search를 이용한 TCSC의 점호각 제어용 퍼지 제어기의 설계)

  • Kim, Woo-Geun;Hwang, Gi-Hyeon;Mun, Gyeong-Jun;Kim, Hyeong-Su;Park, Jun-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.37-39
    • /
    • 2000
  • This paper describes the application of Fuzzy Logic Controller (FLC) to Thyristor Controlled Series Capacitor (TCSC) which can have significant impact on Power system dynamics. The function of the FLC is to control the firing angle of the TCSC. We tuned the scaling factors of the FLC using Tabu Search. The proposed FLC is used for damping the low frequency oscillations caused by disturbances such as the sudden changes of small of large loads or the outages in the generators or transmission lines. To evaluate usefulness of the proposed FLC. we performed the computer simulation for single-machine infinite system. The response of FLC is compared with that of PD controller optimized using Tabu Search. Simulation results that the FLC shows the better control performance than PD controller.

  • PDF

Coordinated Control of TCSC and SVC for System Damping Enhancement

  • So Ping Lam;Chu Yun Chung;Yu Tao
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.spc2
    • /
    • pp.322-333
    • /
    • 2005
  • This paper proposes a combination of the Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) installation for enhancing the damping performance of a power system. The developed scheme employs a damping controller which coordinates measurement signals with control signals to control the TCSC and SVC. The coordinated control method is based on the application of projective controls. Controller performance over a range of operating conditions is investigated through simulation studies on a single-machine infinite-bus power system. The linear analysis and nonlinear simulation results show that the proposed controller can significantly improve the damping performance of the power system and hence, increase its power transfer capabilities. In this paper, a current injection model of TCSC is developed and incorporated in the transmission system model. By using equivalent injected currents at terminal buses to simulate a TCSC no modification of the bus admittance matrix is required at each iteration.

Analysis of the Internal Electrical Characteristics of Electronic Power Transformers

  • Yi, Yang;Mao, Cheng-Xiong;Wang, Dan;Lu, Ji-Ming
    • Journal of Power Electronics
    • /
    • v.13 no.5
    • /
    • pp.746-756
    • /
    • 2013
  • The modularized subunit of an electronic power transformer (EPT) is a series connection of two H-bridge voltage-source converters and a DC-DC converter with a high-frequency isolation transformer (HFIT). On the basis of cascading and paralleling the modularized subunits, EPT can be used in high-voltage and large-current applications in the power system. This paper discusses the steady state analysis of the modularized subunit of EPT. Theoretical analysis considers the influences of the two H-bridge voltage-source converters on the two sides of the DC-DC converter. We deduce the formulas of the theoretical calculation on the internal electrical characteristics of EPT (e.g., the voltages of the DC-bus capacitor and the primary side peak current of the HFIT). This paper provides guidance on the design and selection of EPT key elements (e.g., the DC-bus capacitors and HFIT). Experimental results are obtained from a single subunit of a laboratory model rated at 962 V, 15 kVA. All calculations, simulations, and experiments confirm the theoretical analysis of the subunit of EPT.

Design and Analysis of Resonant Bidirectional AC-DC Converter using Dual Half-Bridge Converter (듀얼 하프브릿지를 이용한 공진형 양방향 AC-DC 전력변환기 해석 및 설계)

  • Byen, Byeng-Joo;Choi, Jung-Muk;Han, Dong-Hwa;Lee, Young-Jin;Seo, Hyun-Uk;Choe, Gyu-Ha
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.2
    • /
    • pp.184-191
    • /
    • 2013
  • In this paper, bidirectional AC-DC converter using dual half-bridge converter is proposed. A transformer leakage inductance in the dual half-bridge converter is used for making resonance with the capacitor of the voltage-doubler, which can help the switched current to be sinusoidal without extra inductive component and also the switching loss can be reduced through operation such as ZVS, ZCS. Both circuit analysis and design guideline are described, and also the feasibility for the proposed converter is shown through the hardware implementation and the experimental results.