신경회로망의 동작과 정보처리 능력 등에 관하여 살펴보고자 할 때, 신경회로망의 구성 요소를 어떻게 모델화 할 것인가는 중요한 문제이다. 소자의 응답특성이 바뀜에 따른 특성의 변화, 결합강도 및 적응규칙이 바뀜으로써 회로망 전체의 다이나믹스가 바뀌는 모습, 소자 상호간의 결합 형태에 따른 정보처리 능력의 변화 등과 같은 신경회로망이 가진 다양한 정보처리 능력을 밝히는 것은 병렬 정보처리의 메카니즘을 이해하는 문제와도 일맥상통하고 있다. 따라서 이러한 문제들에 대하여 신경회로망의 정보처리 능력을 해석적으로 평가하는 것은 병렬분산 정보처리의 본질을 밝힌다는 측면에서 중요하게 여겨진다. 따라서 본 논문에서는 신경회로망을 구성하는 구성요소의 변화, 그 가운데에서도 특히 소자의 히스테리시스 특성이 신경망의 계열연상능력에 미치는 영향에 대한 이론적 해석결과에 대하여 기술한다.
본 논문은 수치적인 데이터를 이용하여 시스템을 구성하는 퍼지 모델링에서 각각의 장점들을 유지하면서 순차적으로 성능을 개선하는 방법을 제안한다. 기존의 다양한 퍼지 모델링의 최적화 방법들은 각각의 뛰어난 최적화 기법을 이용하면서도 순차적으로 퍼지 모델의 성능을 개선하려하는 시도는 많지 않았다. 이에 본 논문에서는 각 단계별로 최적의 성능을 구현하고 이를 다음 단계에서 초기로 이용함으로써 퍼지 모델의 성능이 순차적으로 개선되는 것을 제안하였다. 이는 각각의 최적화 기법들을 지속적으로 이용함으로써 원하는 모델의 성능을 개선하고자 하는 것이다. 제안된 방법의 유용성을 Rice taste 데이터 모델에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 알았다.
This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.
Purpose: The purpose of the study was to investigate the continuous effect of advanced cardiovascular life support (ACLS) simulation education according to Felder-Silverman learning style. Methods: A self-reported questionnaire was completed by 94 students of emergency medical technology and nursing. There were 50 female students (53.2%) and 88 students (93.6%) had basic life support certification. The study instruments included knowledge, performance, and confidence. Data were analyzed using SPSS v. 20.0. Results: The learning style consisted of reflective type (51.1%), sensory type (76.6%), visual type (63.8%), and sequential type (64.9%). There was a significant difference in continuous effect on performance by learning type. Conclusion: It is necessary to identify the learning style of students before simulation education in order to maintain continuous effect of ACLS education.
For action selection as well as learning, simple associations between stimulus and response have been employed in most of literatures. But, for a successful task accomplishment, it is required that an animat can learn and express behavioral sequences. In this paper, we propose a novel action-selection-mechanism to deal with sequential behaviors. For this, we define behavioral motivation as a primitive node for action selection, and then hierarchically construct a network with behavioral motivations. The vertical path of the network represents behavioral sequences. Here, such a tree for our proposed ASM can be newly generated and/or updated, whenever a new sequential behaviors is learned. To show the validity of our proposed ASM, three 2-D grid world simulations will be illustrated.
A process of choosing a subset of original features, so called feature selection, is considered as a crucial preprocessing step to image processing applications. There are already large pools of techniques developed for machine learning and data mining fields. In this paper, basically two methods, non-feature selection and feature selection, are investigated to compare their predictive effectiveness of classification. Color co-occurrence feature is used for defining image features. Standard Sequential Forward Selection algorithm are used for feature selection to identify relevant features and redundancy among relevant features. Four color spaces, RGB, YCbCr, HSV, and Gaussian space are considered for computing color co-occurrence features. Gray-level image feature is also considered for the performance comparison reasons. The experimental results are presented.
The problem of promoting instructional effect using reorganizing the content of textbook is one of the major concerns of many education theorists and teachers. The results of many researches about above problem reveal that reorganizing the content of textbook promotes the ability of recall and problem solving of learners. The content structure of current navigation textbook revealed a categorical structure as its basic framework, though it seems to be a poor one. A categorical structure is known as providing an inferior information processing mechanism for learners than a learning hierarchy content structure is. Furthermore current content structure hasn't given any considerations to navigation in practice, spatial contexts and sequential events of ships from a harbor to another harbor. The learning hierarchy content structure has an advantage of giving learners more systematic and stronger knowledge networks than a categorical structure.
According to the appearance of various virtual websites using multimedia technologies for engineering education, the internet applications in engineering education have drawn much interests. But unidirectional communication, simple text/image-based webpages and tedious learning process without motivation etc. have made the lowering of educational efficiency in cyberspace. Thus, to cope with these difficulties this paper presents a web-based educational Java applets for understanding the principles or conceptions of digital logic systems. The proposed Java applets provides the improved learning methods which can enhance the interests of learners. The results of this paper can be widely used to improve the efficiency of cyberlectures in the cyber university. Several sample Java applets are illustrated to show the validity of the proposed learning method.
Policy polls, which investigate the degree of support that the policy has for policy implementation, play an important role in making decisions. As the number of Internet users increases, the public is actively commenting on their policy news stories. Current policy polls tend to rely heavily on phone and offline surveys. Collecting and analyzing policy articles is useful in policy surveys. In this study, we propose a method of analyzing comments using deep learning technology showing outstanding performance in various fields. In particular, we designed various models based on the recurrent neural network (RNN) which is suitable for sequential data and compared the performance with the support vector machine (SVM), which is a traditional machine learning model. For all test sets, the SVM model show an accuracy of 0.73 and the RNN model have an accuracy of 0.83.
Text classification has been studied for a long time in the Natural Language Processing field. In this paper, we propose an article- and paragraph-level genre classification system using Word2Vec-based LSTM, GRU, and CNN models for large-scale English corpora. Both article- and paragraph-level classification performed best in accuracy with LSTM, which was followed by GRU and CNN in accuracy performance. Thus, it is to be confirmed that in evaluating the classification performance of LSTM, GRU, and CNN, the word sequential information for articles is better than the word feature extraction for paragraphs when the pre-trained Word2Vec-based word embeddings are used in both deep learning-based article- and paragraph-level classification tasks.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.