• 제목/요약/키워드: Sequential learning

검색결과 250건 처리시간 0.031초

계열연상능력에 미치는 히스테리시스 특성에 대한 해석 (Analysis of the effects of the hysteretic property on the performance of sequential associative neural nets)

  • 김응수;이상욱
    • 한국정보통신학회논문지
    • /
    • 제16권3호
    • /
    • pp.448-459
    • /
    • 2012
  • 신경회로망의 동작과 정보처리 능력 등에 관하여 살펴보고자 할 때, 신경회로망의 구성 요소를 어떻게 모델화 할 것인가는 중요한 문제이다. 소자의 응답특성이 바뀜에 따른 특성의 변화, 결합강도 및 적응규칙이 바뀜으로써 회로망 전체의 다이나믹스가 바뀌는 모습, 소자 상호간의 결합 형태에 따른 정보처리 능력의 변화 등과 같은 신경회로망이 가진 다양한 정보처리 능력을 밝히는 것은 병렬 정보처리의 메카니즘을 이해하는 문제와도 일맥상통하고 있다. 따라서 이러한 문제들에 대하여 신경회로망의 정보처리 능력을 해석적으로 평가하는 것은 병렬분산 정보처리의 본질을 밝힌다는 측면에서 중요하게 여겨진다. 따라서 본 논문에서는 신경회로망을 구성하는 구성요소의 변화, 그 가운데에서도 특히 소자의 히스테리시스 특성이 신경망의 계열연상능력에 미치는 영향에 대한 이론적 해석결과에 대하여 기술한다.

퍼지 균등화와 언어적 Hedge를 이용한 GA 기반 순차적 퍼지 모델링 (GA based Sequential Fuzzy Modeling Using Fuzzy Equalization and Linguistic Hedge)

  • 김승석;곽근창;유정웅;전명근
    • 한국지능시스템학회논문지
    • /
    • 제11권9호
    • /
    • pp.827-832
    • /
    • 2001
  • 본 논문은 수치적인 데이터를 이용하여 시스템을 구성하는 퍼지 모델링에서 각각의 장점들을 유지하면서 순차적으로 성능을 개선하는 방법을 제안한다. 기존의 다양한 퍼지 모델링의 최적화 방법들은 각각의 뛰어난 최적화 기법을 이용하면서도 순차적으로 퍼지 모델의 성능을 개선하려하는 시도는 많지 않았다. 이에 본 논문에서는 각 단계별로 최적의 성능을 구현하고 이를 다음 단계에서 초기로 이용함으로써 퍼지 모델의 성능이 순차적으로 개선되는 것을 제안하였다. 이는 각각의 최적화 기법들을 지속적으로 이용함으로써 원하는 모델의 성능을 개선하고자 하는 것이다. 제안된 방법의 유용성을 Rice taste 데이터 모델에 적용하여 제안된 방법이 이전의 연구보다 좋은 결과를 보임을 알았다.

  • PDF

하이브리드 데이터마이닝 메커니즘에 기반한 전문가 지식 추출 (Extraction of Expert Knowledge Based on Hybrid Data Mining Mechanism)

  • 김진성
    • 한국지능시스템학회논문지
    • /
    • 제14권6호
    • /
    • pp.764-770
    • /
    • 2004
  • This paper presents a hybrid data mining mechanism to extract expert knowledge from historical data and extend expert systems' reasoning capabilities by using fuzzy neural network (FNN)-based learning & rule extraction algorithm. Our hybrid data mining mechanism is based on association rule extraction mechanism, FNN learning and fuzzy rule extraction algorithm. Most of traditional data mining mechanisms are depended ()n association rule extraction algorithm. However, the basic association rule-based data mining systems has not the learning ability. Therefore, there is a problem to extend the knowledge base adaptively. In addition, sequential patterns of association rules can`t represent the complicate fuzzy logic in real-world. To resolve these problems, we suggest the hybrid data mining mechanism based on association rule-based data mining, FNN learning and fuzzy rule extraction algorithm. Our hybrid data mining mechanism is consisted of four phases. First, we use general association rule mining mechanism to develop an initial rule base. Then, in the second phase, we adopt the FNN learning algorithm to extract the hidden relationships or patterns embedded in the historical data. Third, after the learning of FNN, the fuzzy rule extraction algorithm will be used to extract the implicit knowledge from the FNN. Fourth, we will combine the association rules (initial rule base) and fuzzy rules. Implementation results show that the hybrid data mining mechanism can reflect both association rule-based knowledge extraction and FNN-based knowledge extension.

Felder-Silverman 학습유형에 따른 전문심장소생술 시뮬레이션 교육의 지속효과 (Continuous effect of advanced cardiovascular life support simulation education according to Felder-Silverman learning style)

  • 김유정;박미정;함영림
    • 한국응급구조학회지
    • /
    • 제20권3호
    • /
    • pp.21-35
    • /
    • 2016
  • Purpose: The purpose of the study was to investigate the continuous effect of advanced cardiovascular life support (ACLS) simulation education according to Felder-Silverman learning style. Methods: A self-reported questionnaire was completed by 94 students of emergency medical technology and nursing. There were 50 female students (53.2%) and 88 students (93.6%) had basic life support certification. The study instruments included knowledge, performance, and confidence. Data were analyzed using SPSS v. 20.0. Results: The learning style consisted of reflective type (51.1%), sensory type (76.6%), visual type (63.8%), and sequential type (64.9%). There was a significant difference in continuous effect on performance by learning type. Conclusion: It is necessary to identify the learning style of students before simulation education in order to maintain continuous effect of ACLS education.

A Novel Action Selection Mechanism for Intelligent Service Robots

  • Suh, Il-Hong;Kwon, Woo-Young;Lee, Sang-Hoon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2027-2032
    • /
    • 2003
  • For action selection as well as learning, simple associations between stimulus and response have been employed in most of literatures. But, for a successful task accomplishment, it is required that an animat can learn and express behavioral sequences. In this paper, we propose a novel action-selection-mechanism to deal with sequential behaviors. For this, we define behavioral motivation as a primitive node for action selection, and then hierarchically construct a network with behavioral motivations. The vertical path of the network represents behavioral sequences. Here, such a tree for our proposed ASM can be newly generated and/or updated, whenever a new sequential behaviors is learned. To show the validity of our proposed ASM, three 2-D grid world simulations will be illustrated.

  • PDF

Comparison of Feature Selection Processes for Image Retrieval Applications

  • Choi, Young-Mee;Choo, Moon-Won
    • 한국멀티미디어학회논문지
    • /
    • 제14권12호
    • /
    • pp.1544-1548
    • /
    • 2011
  • A process of choosing a subset of original features, so called feature selection, is considered as a crucial preprocessing step to image processing applications. There are already large pools of techniques developed for machine learning and data mining fields. In this paper, basically two methods, non-feature selection and feature selection, are investigated to compare their predictive effectiveness of classification. Color co-occurrence feature is used for defining image features. Standard Sequential Forward Selection algorithm are used for feature selection to identify relevant features and redundancy among relevant features. Four color spaces, RGB, YCbCr, HSV, and Gaussian space are considered for computing color co-occurrence features. Gray-level image feature is also considered for the performance comparison reasons. The experimental results are presented.

학습위계에 의한 항해교과의 내용 구조화 (The Content Structure of the Navigation Course Using Learning Hierarchy)

  • 윤현상
    • 수산해양교육연구
    • /
    • 제6권2호
    • /
    • pp.198-216
    • /
    • 1994
  • The problem of promoting instructional effect using reorganizing the content of textbook is one of the major concerns of many education theorists and teachers. The results of many researches about above problem reveal that reorganizing the content of textbook promotes the ability of recall and problem solving of learners. The content structure of current navigation textbook revealed a categorical structure as its basic framework, though it seems to be a poor one. A categorical structure is known as providing an inferior information processing mechanism for learners than a learning hierarchy content structure is. Furthermore current content structure hasn't given any considerations to navigation in practice, spatial contexts and sequential events of ships from a harbor to another harbor. The learning hierarchy content structure has an advantage of giving learners more systematic and stronger knowledge networks than a categorical structure.

  • PDF

디지털 순서회로에 대한 웹기반 개념학습형 자바 애플릿 (Web-based Java Applets for Understanding the Concepts of Digital Sequential Circuits)

  • 김동식;서호준;서삼준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2001년도 하계학술대회 논문집 D
    • /
    • pp.2490-2492
    • /
    • 2001
  • According to the appearance of various virtual websites using multimedia technologies for engineering education, the internet applications in engineering education have drawn much interests. But unidirectional communication, simple text/image-based webpages and tedious learning process without motivation etc. have made the lowering of educational efficiency in cyberspace. Thus, to cope with these difficulties this paper presents a web-based educational Java applets for understanding the principles or conceptions of digital logic systems. The proposed Java applets provides the improved learning methods which can enhance the interests of learners. The results of this paper can be widely used to improve the efficiency of cyberlectures in the cyber university. Several sample Java applets are illustrated to show the validity of the proposed learning method.

  • PDF

Political Opinion Mining from Article Comments using Deep Learning

  • Sung, Dae-Kyung;Jeong, Young-Seob
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권1호
    • /
    • pp.9-15
    • /
    • 2018
  • Policy polls, which investigate the degree of support that the policy has for policy implementation, play an important role in making decisions. As the number of Internet users increases, the public is actively commenting on their policy news stories. Current policy polls tend to rely heavily on phone and offline surveys. Collecting and analyzing policy articles is useful in policy surveys. In this study, we propose a method of analyzing comments using deep learning technology showing outstanding performance in various fields. In particular, we designed various models based on the recurrent neural network (RNN) which is suitable for sequential data and compared the performance with the support vector machine (SVM), which is a traditional machine learning model. For all test sets, the SVM model show an accuracy of 0.73 and the RNN model have an accuracy of 0.83.

A Deeping Learning-based Article- and Paragraph-level Classification

  • Kim, Euhee
    • 한국컴퓨터정보학회논문지
    • /
    • 제23권11호
    • /
    • pp.31-41
    • /
    • 2018
  • Text classification has been studied for a long time in the Natural Language Processing field. In this paper, we propose an article- and paragraph-level genre classification system using Word2Vec-based LSTM, GRU, and CNN models for large-scale English corpora. Both article- and paragraph-level classification performed best in accuracy with LSTM, which was followed by GRU and CNN in accuracy performance. Thus, it is to be confirmed that in evaluating the classification performance of LSTM, GRU, and CNN, the word sequential information for articles is better than the word feature extraction for paragraphs when the pre-trained Word2Vec-based word embeddings are used in both deep learning-based article- and paragraph-level classification tasks.