• Title/Summary/Keyword: Sequential detection

Search Result 262, Processing Time 0.027 seconds

Sequential Changes of Plasma C-Reactive Protein, Erythrocyte Sedimentation Rate and White Blood Cell Count in Spine Surgery : Comparison between Lumbar Open Discectomy and Posterior Lumbar Interbody Fusion

  • Choi, Man Kyu;Kim, Sung Bum;Kim, Kee D.;Ament, Jared D.
    • Journal of Korean Neurosurgical Society
    • /
    • v.56 no.3
    • /
    • pp.218-223
    • /
    • 2014
  • Objective : C-reactive protein (CRP) and erythrocyte sedimentation rate (ESR) are often utilized to evaluate for postoperative infection. Abnormal values may be detected after surgery even in case of non-infection because of muscle injury, transfusion, which disturbed prompt perioperative management. The purpose of this study was to evaluate and compare the perioperative CRP, ESR, and white blood cell (WBC) counts after spine surgery, which was proved to be non-infection. Methods : Twenty patients of lumbar open discectomy (LOD) and 20 patients of posterior lumbar interbody fusion (PLIF) were enrolled in this study. Preoperative and postoperative prophylactic antibiotics were administered routinely for 7 days. Blood samples were obtained one day before surgery and postoperative day (POD) 1, POD3, and POD7. Using repeated measures ANOVA, changes in effect measures over time and between groups over time were assessed. All data analysis was conducted using SAS v.9.1. Results : Changes in CRP, within treatment groups over time and between treatment groups over time were both statistically significant F(3,120)=5.05, p=0.003 and F(1,39)=7.46, p=0.01, respectively. Most dramatic changes were decreases in the LOD group on POD3 and POD7. Changes in ESR, within treatment groups over time and between treatment groups over time were also found to be statistically significant, F(3,120)=6.67, p=0.0003 and F(1,39)=3.99, p=0.01, respectively. Changes in WBC values also were be statistically significant within groups over time, F(3,120)=40.52, p<0.001, however, no significant difference was found in between groups WBC levels over time, F(1,39)=0.02, p=0.89. Conclusion : We found that, dramatic decrease of CRP was detected on POD3 and POD7 in LOD group of non-infection and dramatic increase of ESR on POD3 and POD7 in PLIF group of non-infection. We also assumed that CRP would be more effective and sensitive parameter especially in LOD than PLIF for early detection of infectious complications. Awareness of the typical pattern of CRP, ESR, and WBC may help to evaluate the early postoperative course.

A Fast Sensing Method using Concurrent Driving and Sequential Sensing for Large Capacitance Touch Screens (동시구동 및 순차센싱을 이용한 대형 정전용량 터치스크린용 고속 센싱 기법)

  • Mohamed, Mohamed G.A.;Kim, HyungWon;Cho, Tae-Won
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.4
    • /
    • pp.62-70
    • /
    • 2015
  • Recently the demand for projected capacitance touch screens is sharply growing especially for large screens for medical devices, PC monitors and TVs. Large touch screens in general need a controller of higher complexity. They usually have a larger number of driving and sensing lines, and hence it takes longer to scan one frame for touch detection leading to a low frame scan rate. In this paper, a novel touch screen control technique is presented, which scans each frame in two steps of simultaneous multi-channel driving. The first step is to drive all driving lines simultaneously and determine which sensing lines have any touch. The second step is to sequentially rescan only the touched sensing lines, and determine exact positions of the touches. This technique can substantially increase the frame scan rate. This technique has been implemented using an FPGA and an AFE board, and tested using a commercial 23-inch touch screen panel. Experimental results show that the proposed technique improves the frame scan rate by 8.4 times for the 23-inch touch screen panel over conventional methods.

Analysis of Human Serum Amyloid A-1 Concentrations Using a Lateral Flow Immunoassay with CdSe/ZnS Quantum Dots (Human Serum Amyloid A-1 단백질 농도 분석을 위한 CdSe/ZnS 양자점 기반의 Lateral Flow Immunoassay 방법 개발)

  • Fajri, Aidil;Goh, Eunseo;Lee, Sanghyuk;Lee, Hye Jin
    • Applied Chemistry for Engineering
    • /
    • v.30 no.4
    • /
    • pp.429-434
    • /
    • 2019
  • A lateral flow immunoassay platform utilizing antibody functionalized water soluble CdSe/ZnS semiconductor quantum dots (QDs) was developed for the analysis of human serum amyloid A-1 (hSAA1) in a buffer solution. hSAA1 was chosen as a target protein because it is regarded as a potential biomarker associated with early diagnosis and prognosis in patients of lung cancer. The immunoassay strip on a nitrocellulose membrane was fabricated by spraying two lines composed of a test line with a monoclonal antibody against hSAA1 (10G1) (anti hSAA1) and a control line of anti-chicken IgY. While the CdSe/ZnS QDs synthesized in an organic phase were transferred to a water phase by ligand exchange using carboxylic acid modified alkane thiol. The QDs was then conjugated to monoclonal antibody against hSAA1 (14F8) [anti hSAA1 (14F8)] and used as a fluorescent detection probe. The sequential lateral flow of hSAA1 in different concentration and QDs-anti hSAA1 (14F8) complex allowed to form the surface sandwich complex of anti hSAA1 (10G1)/hSAA1/QD-anti hSAA1 (14F8), which was then analyzed using fluorescence microscope. A 100 nM concentration of hSAA1 protein can be detected by naked eyes under an optimized lateral flow buffer condition with a sensing time of 5 mins.

A Study of the Seocheon Fireball Explosion on September 23, 2020 (2020년 9월 23일 서천 화구 폭발 관측 연구)

  • Che, Il-Young;Kim, Inho
    • Journal of the Korean earth science society
    • /
    • v.42 no.6
    • /
    • pp.688-699
    • /
    • 2021
  • On September 23, 2020, at 1:39 a.m., a bright fireball above Seocheon was observed across the country. Two fireball explosions were identified in the images of the All-Sky Camera (ASC), and the shock waves were recorded at seismic and infrasound stations in the southwestern Korean Peninsula. The location of the explosion was estimated by a Bayesian-based location method using the arrival times of the fireball-associated seismic and infrasound signals at 17 stations. Realistic azimuth- and rang-dependent propagation speeds of sound waves were incorporated into the location method to increase the reliability of the results. The location of the sound source was found to be 36.050°N, 126.855°E at an altitude of 35 km, which was close to the location of the second fireball explosion. The two explosions were identified as sequential infrasound arrivals at local infrasound stations. Simulations of waveforms for long ranges explain the detection results at distant infrasound stations, up to ~266 km from the sound source. The dominant period of the signals recorded at five infrasound stations is about 0.4 s. A period-energy relation suggests the explosion energy was equivalent to ~0.3 ton of TNT.

Comparison of Inflammatory Markers Changes in Patients Who Used Postoperative Prophylactic Antibiotics within 24 Hours after Spine Surgery and 5 Days after Spine Surgery

  • Youn, Gun;Choi, Man Kyu;Kim, Sung Bum
    • Journal of Korean Neurosurgical Society
    • /
    • v.65 no.6
    • /
    • pp.834-840
    • /
    • 2022
  • Objective : C-reactive protein (CRP) level, erythrocyte sedimentation rate (ESR), and white blood cell (WBC) count are inflammatory markers used to evaluate postoperative infections. Although these markers are non-specific, understanding their normal kinetics after surgery may be helpful in the early detection of postoperative infections. To compliment the recent trend of reducing the duration of antibiotic use, this retrospective study investigated the inflammatory markers of patients who had received antibiotics within 24 hours after surgery according to the Health Insurance Review & Assessment Service guidelines and compared them with those of patients who had received antibiotics for 5 days, which was proven to be non-infectious. Methods : We enrolled 74 patients, divided into two groups. Patients underwent posterior lumbar interbody fusion (PLIF) at a single institution between 2019 and 2020. Group A included 37 patients who received antibiotics within 24 hours after the PLIF procedure, and group B comprised 37 patients who had used antibiotics for 5 days. A 1 : 1 nearest-neighbor propensity-matched analysis was used. The clinical variables included age, sex, medical history, body mass index, estimated blood loss, and operation time. Laboratory data included CRP, ESR, and WBC, which were measured preoperatively and on postoperative days (POD) 1, 3, 5, and 7. Results : CRP dynamics tended to decrease after peaking on POD 3, with a similar trend in both groups. The average CRP level in group B was slightly higher than that in group A; however, the difference was not statistically significant. Multiple linear regression analysis revealed operation time, number of fused levels, and estimated blood loss as significant predictors of a greater CRP peak value (r2=0.473, p<0.001) in patients. No trend (a tendency to decrease from the peak value) could be determined for ESR and WBC count on POD 7. Conclusion : Although slight differences were observed in numerical values and kinetics, sequential changes in inflammatory markers according to the duration of antibiotic administration showed similar patterns. Knowledge of CRP kinetics allows the assessment of the degree of difference between the clinical and expected values.

Hybrid Structural Health Monitoring of Steel Plate-Girder Bridges using Acceleration-Impedance Features (가속도-임피던스 특성을 이용한 강판형교의 하이브리드 구조건전성 모니터링)

  • Hong, Dong-Soo;Do, Han-Sung;Na, Won-Bae;Kim, Jeong-Tae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.1A
    • /
    • pp.61-73
    • /
    • 2009
  • In this paper, hybrid health monitoring techniques using acceleration-impedance features are newly proposed to detect two damage-type in steel plate-girder bridges, which are girder's stiffness-loss and support perturbation. The hybrid techniques mainly consists of three sequential phases: 1) to alarm the occurrence of damage in global manner, 2) to classify the alarmed damage into subsystems of the structure, and 3) to estimate the classified damage in detail using methods suitable for the subsystems. In the first phase, the global occurrence of damage is alarmed by monitoring changes in acceleration features. In the second phase, the alarmed damage is classified into subsystems by recognizing patterns of impedance features. In the final phase, the location and the extent of damage are estimated by using modal strain energy-based damage index method and root mean square deviation (RMSD) method. The feasibility of the proposed hybrid technique is evaluated on a laboratory-scaled steel plate-girder bridge model for which hybrid acceleration-impedance signatures were measured for several damage scenarios. Also, the effect of temperature on the accuracy of the impedance-based damage monitoring results are experimentally examined from combined scenarios of support damage cases and temperature changes.

Risk assessment for development of consecutive shield TBM technology (연속굴착형 쉴드 TBM 기술 개발을 위한 리스크 평가)

  • Kibeom Kwon;Hangseok Choi;Chaemin Hwang;Sangyeong Park;Byeonghyun Hwang
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.26 no.4
    • /
    • pp.303-314
    • /
    • 2024
  • Recently, the consecutive shield tunnel boring machine (TBM) has gained attention for its potential to enhance TBM penetration rates. However, its development requires a thorough risk assessment due to the unconventional nature of its equipment and hydraulic systems, coupled with the absence of design or construction precedents. This study investigated the causal relationships between four accidents and eight relevant sources associated with the consecutive shield TBM. Subsequently, risk levels were determined based on expert surveys and a risk matrix technique. The findings highlighted significant impacts associated with collapses or surface settlements and the likelihood of causal combinations leading to misalignment. Specifically, this study emphasized the importance of proactive mitigation measures to address collapses or surface settlements caused by inadequate continuous tail void backfill or damaged thrust jacks. Furthermore, it is recommended to develop advanced non-destructive testing technology capable of comprehensive range detection across helical segments, to design a sequential thrust jack propulsion system, and to determine an optimal pedestal angle.

Antibody Functionalized UiO-66-(COOH)2 Amplified Surface Plasmon Resonance Analysis Method for fM Oxytocin (펨토몰 농도의 옥시토신 검출을 위한 항체 기능성 UiO-66-(COOH)2 증폭형 표면 플라즈몬 공명 분석법 개발)

  • Myungseob Lee;Ha-Young Nam;Su Yeon Park;Sung Hwa Jhung;Hye Jin Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.4
    • /
    • pp.335-340
    • /
    • 2024
  • In this paper, we synthesized organic and inorganic hybrid materials to introduce antibody functionality to UIO-66 and incorporated them into a surface plasmon resonance (SPR) assay to enhance the sensitivity of detecting small molecules such as oxytocin. A biological marker peptide called oxytocin may help in the diagnosis of heart failure, Alzheimer's disease, and cancer. To detect oxytocin at concentrations as low as a few femtomole (fM), we developed a surface sandwich assay utilizing a pair of oxytocin-specific antibodies for enhancing selectivity and one of metal organic frameworks [e.g., UiO-66-(COOH)2] possessing high porosity and surface-area as a signal amplifier. Initially, real-time SPR assays were used to confirm that each selected oxytocin-specific antibody binds strongly to oxytocin and to different binding sites on oxytocin. One of these antibodies (e.g., anti-OXT[OTI5G4]) was immobilized on the surface of a thin gold chip. Upon sequential injecting of oxytocin and the other antibody (e.g., anti-OXT[4G11]) conjugated to UiO-66-(COOH)2 onto the surface to form the surface sandwich complex of anti-OXT[OTI5G4]/oxytocin/UiO-66-(COOH)2-anti-OXT[4G11]), SPR changes, which varied with oxytocin concentration, were then measured in real time. The results demonstrated that sensitivity was amplified by over a million-fold compared to assays without UiO-66-(COOH)2, enabling oxytocin detection down to approximately 10 fM.

Effectiveness of Radionuclide Cisternography to Detect the Leakage Site of CSF in Spontaneous Intracranial Hypotension; Preliminary Report (자발성 두개강내 저뇌압증 환자의 뇌척수액 누출부위 진단에 방사성동위원소 뇌조조영술의 유효성: 예비결과 보고)

  • Kim, Seong-Min;Kim, Jae-Moon
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.40 no.3
    • /
    • pp.148-154
    • /
    • 2006
  • Purpose: Although radionuclide cisternography (RNC) is an useful study to detect cerebrospinal fluid (CSF) leakage in the patient with spontaneous intracranial hypotension (SIH), it sometimes fails to demonstrate the site of CSF leakage. The aim of the study is to improve the detection of leakage site of CSF and to reduce time for the study in RNC using modified protocol (m-RNC). Materials & methods : The study consists of 8 studies of 7 patients ($38{\pm}8$ years, M:F=2:5) with SIH, who underwent m-RNC following administration of 185-222 MBq of $^{99m}Tc$-DTPA into the lumbar subarachnoid space. Sequential images were obtained the whole spine with the head including urinary bladder at 10 minute, 30 minute, 1 hour, 2 hour, 4 hour and 6 hour. Radioactivity of extradural space and urinary bladder was evaluated. Results: Leakage site of CSF was identified in all 8 cases by m-RNC. Leakage site was cervicothoracic junction (CTJ, n=3), CTJ with C1-2 (n=2), CTJ with thoracic spine, thoracolumbar spine and lumbar spine (each n=1). All cases presented leakage sites within 1 hour and multiple sites, where CTJ was included in 6 cases. Only one case presented additional site in 6 hour image. Early radioactivity within the urinary bladder was noted in 6 cases, but that was fellowing after identification of the leakage site. Conclusion: Radionuclide cisternography is sensitive to detect the leakage site of CSF and is expected to improve the detection of CSF leakage site and reduce time for the study using modified protocol.

Automatic gasometer reading system using selective optical character recognition (관심 문자열 인식 기술을 이용한 가스계량기 자동 검침 시스템)

  • Lee, Kyohyuk;Kim, Taeyeon;Kim, Wooju
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.1-25
    • /
    • 2020
  • In this paper, we suggest an application system architecture which provides accurate, fast and efficient automatic gasometer reading function. The system captures gasometer image using mobile device camera, transmits the image to a cloud server on top of private LTE network, and analyzes the image to extract character information of device ID and gas usage amount by selective optical character recognition based on deep learning technology. In general, there are many types of character in an image and optical character recognition technology extracts all character information in an image. But some applications need to ignore non-of-interest types of character and only have to focus on some specific types of characters. For an example of the application, automatic gasometer reading system only need to extract device ID and gas usage amount character information from gasometer images to send bill to users. Non-of-interest character strings, such as device type, manufacturer, manufacturing date, specification and etc., are not valuable information to the application. Thus, the application have to analyze point of interest region and specific types of characters to extract valuable information only. We adopted CNN (Convolutional Neural Network) based object detection and CRNN (Convolutional Recurrent Neural Network) technology for selective optical character recognition which only analyze point of interest region for selective character information extraction. We build up 3 neural networks for the application system. The first is a convolutional neural network which detects point of interest region of gas usage amount and device ID information character strings, the second is another convolutional neural network which transforms spatial information of point of interest region to spatial sequential feature vectors, and the third is bi-directional long short term memory network which converts spatial sequential information to character strings using time-series analysis mapping from feature vectors to character strings. In this research, point of interest character strings are device ID and gas usage amount. Device ID consists of 12 arabic character strings and gas usage amount consists of 4 ~ 5 arabic character strings. All system components are implemented in Amazon Web Service Cloud with Intel Zeon E5-2686 v4 CPU and NVidia TESLA V100 GPU. The system architecture adopts master-lave processing structure for efficient and fast parallel processing coping with about 700,000 requests per day. Mobile device captures gasometer image and transmits to master process in AWS cloud. Master process runs on Intel Zeon CPU and pushes reading request from mobile device to an input queue with FIFO (First In First Out) structure. Slave process consists of 3 types of deep neural networks which conduct character recognition process and runs on NVidia GPU module. Slave process is always polling the input queue to get recognition request. If there are some requests from master process in the input queue, slave process converts the image in the input queue to device ID character string, gas usage amount character string and position information of the strings, returns the information to output queue, and switch to idle mode to poll the input queue. Master process gets final information form the output queue and delivers the information to the mobile device. We used total 27,120 gasometer images for training, validation and testing of 3 types of deep neural network. 22,985 images were used for training and validation, 4,135 images were used for testing. We randomly splitted 22,985 images with 8:2 ratio for training and validation respectively for each training epoch. 4,135 test image were categorized into 5 types (Normal, noise, reflex, scale and slant). Normal data is clean image data, noise means image with noise signal, relfex means image with light reflection in gasometer region, scale means images with small object size due to long-distance capturing and slant means images which is not horizontally flat. Final character string recognition accuracies for device ID and gas usage amount of normal data are 0.960 and 0.864 respectively.