Acknowledgement
This Project was supported by the National Research Foundation of Korea (NRF) grant, funded by the Korean government (Ministry of Science and ICT, MSIT) (Grand number: RS-2023-00207831 and RS-2024-00343620).
References
- A. Dhillon, A. Singh, and V. K. Bhalla, A Systematic review on biomarker identification for cancer diagnosis and prognosis in multi-omics: From computational needs to machine learning and deep learning, Arch. Comput. Method Eng., 30, 917-949 (2022).
- K. Yerin, C. Yu Rim, K. Bong-Geun, and N. Hyon Bin, Recent progress in multiplexed detection of biomarkers based on quantum dots, Appl. Chem. Eng., 33, 451-458 (2022). https://doi.org/10.14478/ACE.2022.1093
- J. Li, Y. Si, D. T. Nde, and H. J. Lee, Development of voltammetric nanobio-incorporated analytical method for protein biomarker specific to early diagnosis of lung cancer, Appl. Chem. Eng., 32, 461-466 (2021). https://doi.org/10.14478/ACE.2021.1057
- J. Li, Y. Si, and H. J. Lee, Recent research trend of biosensors for colorectal cancer specific protein biomarkers, Appl. Chem. Eng., 32, 253-259 (2021). https://doi.org/10.14478/ACE.2021.1040
- H. Kim, J. U. Lee, S. Song, S. Kim, and S. J. Sim, A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer's disease biomarkers, Biosens. Bioelectron., 101, 96-102 (2018). https://doi.org/10.1016/j.bios.2017.10.018
- C. Min, H. Ha, and J. Jeon, Development of fluorescent small molecules for imaging of Alzheimer's disease biomarkers, Appl. Chem. Eng., 32, 1-9 (2021).
- M. Supianto, J. Lim, and H. J. Lee, Development of lateral flow immunofluorescence assay applicable to lung cancer, Appl. Chem. Eng., 33, 173-178 (2022).
- R. R. Kumar, A. Kumar, C.-H. Chuang, and M. O. Shaikh, Recent advances and emerging trends in cancer biomarker detection technologies, Ind. Eng. Chem. Res., 62, 5691-5713 (2023). https://doi.org/10.1021/acs.iecr.2c04097
- E. Piktel, I. Levental, B. Durnas, P. A. Janmey, and R. Bucki, Plasma gelsolin: Indicator of inflammation and its potential as a diagnostic tool and therapeutic target, Int. J. Mol. Sci., 19, 2516 (2018).
- E. Dziurkowska and M. Wesolowski, Cortisol as a biomarker of mental disorder severity, J. Clin. Med., 10, 5204 (2021).
- B. Lerman, T. Harricharran, and O. O. Ogunwobi, Oxytocin and cancer: An emerging link, World J. Clin. Oncol., 9, 74-82 (2018).
- H. Xu, S. Fu, Q. Chen, M. Gu, J. Zhou, C. Liu, Y. Chen, and Z. Wang, The function of oxytocin: a potential biomarker for prostate cancer diagnosis and promoter of prostate cancer, Oncotarget, 8, 31215 (2017).
- A. H. Kemp, D. S. Quintana, R.-L. Kuhnert, K. Griffiths, I. B. Hickie, and A. J. Guastella, Oxytocin increases heart rate variability in humans at rest: implications for social approach-related motivation and capacity for social engagement, PLoS One, 7, e44014 (2012).
- H. Yamasue, Function and structure in social brain regions can link oxytocin-receptor genes with autistic social behavior, Brain Dev., 35, 111-8 (2013).
- A. Hering, B. Jieu, A. Jones, and M. Muttenthaler, Approaches to improve the quantitation of oxytocin in human serum by mass spectrometry, Front. Chem., 10, 889154 (2022).
- M. Li, R. D. Josephs, A. Daireaux, T. Choteau, S. Westwood, G. Martos, R. I. Wielgosz, and H. Li, Structurally related peptide impurity identification and accurate quantification for synthetic oxytocin by liquid chromatography-high-resolution mass spectrometry, Anal. Bioanal. Chem., 413, 1861-1870 (2021). https://doi.org/10.1007/s00216-021-03154-5
- M. Moerkerke, M. Peeters, L. de Vries, N. Daniels, J. Steyaert, K. Alaerts, and B. Boets, Endogenous oxytocin levels in autism-a meta-analysis, Brain Sci., 11, 1545 (2021).
- S. Mehrotra, P. Rai, K. Gautam, A. Saxena, R. Verma, V. Lahane, S. Singh, A. K. Yadav, S. Patnaik, S. Anbumani, S. Priya, and S. K. Sharma, Chitosan-carbon nanofiber based disposable bioelectrode for electrochemical detection of oxytocin, Food Chem., 418, 135965 (2023).
- F. A. Liu, N. Ardabili, I. Brown, H. Rafi, C. Cook, R. Nikopoulou, A. Lopez, S. Zou, M. R. Hartings, and A. G. Zestos, Modified sawhorse waveform for the voltammetric detection of oxytocin, J. Electrochem. Soc., 169, 017512 (2022).
- Y. Zhou, M. Liu, X. Liu, R. Jiang, Y. He, Q. Yao, H. Chen, and C. Fu, Rapid and sensitive fluorescence determination of oxytocin using nitrogen-doped carbon dots as fluorophores, J. Pharm. Biomed. Anal., 229, 115344 (2023).
- S. Rastogi, V. Kumari, V. Sharma, and F. J. Ahmad, Colorimetric detection of oxytocin in bottle gourd using cysteamine functionalized gold nanoparticle (Cys-AuNPs), Food Anal. Meth., 15, 2972-2983 (2022). https://doi.org/10.1007/s12161-022-02350-y
- Y. Suzuki, Development of magnetic nanobeads modified by artificial fluorescent peptides for the highly sensitive and selective analysis of oxytocin, Sensors, 20, 5956 (2020).
- K. Bong-Geun, Y. Sang Bin, H. Sukyeong, and N. Hyon Bin, Recent progress in colorimetric assays using the absorption of plasmonic gold nanoparticles, Appl. Chem. Eng., 35, 67-78 (2024). https://doi.org/10.14478/ACE.2024.1013
- V. Yesudasu, H. S. Pradhan, and R. J. Pandya, Recent progress in surface plasmon resonance based sensors: A comprehensive review, Heliyon, 7, e06321 (2021).
- Q. Wang, Z.-H. Ren, W.-M. Zhao, L. Wang, X. Yan, A.-s. Zhu, F.-m. Qiu, and K.-K. Zhang, Research advances on surface plasmon resonance biosensors, Nanoscale, 14, 564-591 (2022). https://doi.org/10.1039/D1NR05400G
- J. Li, S. H. Lee, D. K. Yoo, H. C. Woo, S. H. Jhung, M. Jovic, H. Girault, and H. J. Lee, A spatially multiplexed voltammetric magneto-sandwich assay involving Fe3O4/Fe-based metal-organic framework for dual liver cancer biomarkers, Sens. Actuators B Chem., 380, 133313 (2023).
- M. Supianto, D. K. Yoo, H. Hwang, H. B. Oh, S. H. Jhung, and H. J. Lee, Linker-preserved iron metal-organic framework-based lateral flow assay for sensitive transglutaminase 2 detection in urine through machine learning-assisted colorimetric analysis, ACS Sens., 9, 1321-1330 (2024).
- P. Sunghwan and L. Young-Sei, Scalable fabrications of mixed-matrix membranes via polymer modification-enabled in situ metal-organic framework formation for gas separation: A review, Appl. Chem. Eng., 34, 213-220 (2023). https://doi.org/10.14478/ACE.2023.1040
- Y. Wang, Z. Mao, Q. Chen, K. Koh, X. Hu, and H. Chen, Rapid and sensitive detection of PD-L1 exosomes using Cu-TCPP 2D MOF as a SPR sensitizer, Biosens. Bioelectron., 201, 113954 (2022).
- Y. Wang, Z. Niu, C. Xu, M. Zhan, K. Koh, J. Niu, and H. Chen, 2D MOF-enhanced SPR sensing platform: Facile and ultrasensitive detection of sulfamethazine via supramolecular probe, J. Hazard. Mater., 456, 131642 (2023).
- Z. Chen, X. Wang, H. Noh, G. Ayoub, G. W. Peterson, C. T. Buru, T. Islamoglu, and O. K. Farha, Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal-organic frameworks for toxic chemical removal, CrystEngComm, 21, 2409-2415 (2019). https://doi.org/10.1039/C9CE00213H
- S. Kim and H. J. Lee, Direct detection of alpha-1 antitrypsin in serum samples using surface plasmon resonance with a new aptamer-antibody sandwich assay, Anal. Chem., 87, 7235-40 (2015). https://doi.org/10.1021/acs.analchem.5b01192
- S. H. Lee, J. H. Back, H. J. Joo, D.-S. Lim, J. E. Lee, and H. J. Lee, Simultaneous detection method for two cardiac disease protein biomarkers on a single chip modified with mixed aptamers using surface plasmon resonance, Talanta, 267, 125232 (2024).
- L. Rahmidar, G. Gumilar, N. L. W. Septiani, C. Wulandari, M. Iqbal, S. Wustoni, and B. Yuliarto, Label-free and early detection of HER2 breast cancer biomarker based on UiO-66-NH2 modified gold chip (Au/UiO-66-NH2) using surface plasmon resonance technique, Microchem. J., 199, 109963 (2024).
- S. Kim, A. W. Wark, and H. J. Lee, Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance, Anal. Chem., 88, 7793-7799 (2016). https://doi.org/10.1021/acs.analchem.6b01825
- S. Kim and H. J. Lee, Direct detection of α-1 antitrypsin in serum samples using surface plasmon resonance with a new aptamer-antibody sandwich assay, Anal. Chem., 87, 7235-7240 (2015). https://doi.org/10.1021/acs.analchem.5b01192
- S. Kim, S. Lee, and H. J. Lee, An aptamer-aptamer sandwich assay with nanorod-enhanced surface plasmon resonance for attomolar concentration of norovirus capsid protein, Sens. Actuators B Chem., 273, 1029-1036 (2018). https://doi.org/10.1016/j.snb.2018.06.108
- H. J. Lee, A. W. Wark, and R. M. Corn, Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings, Analyst, 133, 596-601 (2008). https://doi.org/10.1039/b718713k