DOI QR코드

DOI QR Code

Antibody Functionalized UiO-66-(COOH)2 Amplified Surface Plasmon Resonance Analysis Method for fM Oxytocin

펨토몰 농도의 옥시토신 검출을 위한 항체 기능성 UiO-66-(COOH)2 증폭형 표면 플라즈몬 공명 분석법 개발

  • Myungseob Lee (Department of Chemistry, Kyungpook National University) ;
  • Ha-Young Nam (Department of Chemistry, Kyungpook National University) ;
  • Su Yeon Park (Department of Chemistry, Kyungpook National University) ;
  • Sung Hwa Jhung (Department of Chemistry, Kyungpook National University) ;
  • Hye Jin Lee (Department of Chemistry, Kyungpook National University)
  • Received : 2024.06.19
  • Accepted : 2024.07.22
  • Published : 2024.08.10

Abstract

In this paper, we synthesized organic and inorganic hybrid materials to introduce antibody functionality to UIO-66 and incorporated them into a surface plasmon resonance (SPR) assay to enhance the sensitivity of detecting small molecules such as oxytocin. A biological marker peptide called oxytocin may help in the diagnosis of heart failure, Alzheimer's disease, and cancer. To detect oxytocin at concentrations as low as a few femtomole (fM), we developed a surface sandwich assay utilizing a pair of oxytocin-specific antibodies for enhancing selectivity and one of metal organic frameworks [e.g., UiO-66-(COOH)2] possessing high porosity and surface-area as a signal amplifier. Initially, real-time SPR assays were used to confirm that each selected oxytocin-specific antibody binds strongly to oxytocin and to different binding sites on oxytocin. One of these antibodies (e.g., anti-OXT[OTI5G4]) was immobilized on the surface of a thin gold chip. Upon sequential injecting of oxytocin and the other antibody (e.g., anti-OXT[4G11]) conjugated to UiO-66-(COOH)2 onto the surface to form the surface sandwich complex of anti-OXT[OTI5G4]/oxytocin/UiO-66-(COOH)2-anti-OXT[4G11]), SPR changes, which varied with oxytocin concentration, were then measured in real time. The results demonstrated that sensitivity was amplified by over a million-fold compared to assays without UiO-66-(COOH)2, enabling oxytocin detection down to approximately 10 fM.

본 논문에서는 UIO-66에 항체 기능성을 도입한 유무기 하이브리드 소재를 합성하고 이를 표면 플라즈몬 공명(surface plasmon resonance, SPR) 분석법에 접목하여 옥시토신과 같은 작은 분자를 검출하는 감도를 향상시키고자 하였다. 옥시토신은 암, 알츠하이머, 심부전증 진단에 중요한 생물학적 표지 펩타이드 분자로 알려져 있으며, 이를 수 펨토몰(femtomole, fM) 농도 수준까지 검출하기 위해 다공성이며 표면적이 우수한 metal organic frameworks 중 하나인 UiO-66-(COOH)2 소재를 신호증폭용으로 활용하면서 옥시토신에 특이적인 항체 페어를 이용하는 표면 샌드위치 분석법을 개발함으로써 선택성을 향상시키고자 하였다. 이를 위해 먼저 선정한 각 옥시토신 특이적 항체가 옥시토신에 대해 강하게 결합하는지 그리고 각 항체가 옥시토신의 서로 다른 결합사이트에 결합하는지를 실시간 SPR 분석법으로 확인하였다. 선정한 항체 중 한 개(예: anti-OXT [OTI5G4])를 SPR용 금 박막 칩 표면에 고정하고, 옥시토신을 흘려준 후, UiO-66-(COOH)2에 컨쥬게이션된 다른 항체(예: anti-OXT[4G11])를 순차적으로 흘려주어 표면에 샌드위치 복합체(anti-OXT[OTI5G4]/옥시토신/UiO-66-(COOH)2-anti-OXT[4G11])를 형성하였을 때 옥시토신 농도에 따라 SPR 신호가 변화하는 것을 실시간으로 모니터링하였다. 그 결과, UiO-66-(COOH)2를 사용하지 않았을 때 대비 약 백만 배 이상 감도를 증폭시켜 약 10 fM까지 검출 가능함을 보여주었다.

Keywords

Acknowledgement

This Project was supported by the National Research Foundation of Korea (NRF) grant, funded by the Korean government (Ministry of Science and ICT, MSIT) (Grand number: RS-2023-00207831 and RS-2024-00343620).

References

  1. A. Dhillon, A. Singh, and V. K. Bhalla, A Systematic review on biomarker identification for cancer diagnosis and prognosis in multi-omics: From computational needs to machine learning and deep learning, Arch. Comput. Method Eng., 30, 917-949 (2022).
  2. K. Yerin, C. Yu Rim, K. Bong-Geun, and N. Hyon Bin, Recent progress in multiplexed detection of biomarkers based on quantum dots, Appl. Chem. Eng., 33, 451-458 (2022). https://doi.org/10.14478/ACE.2022.1093
  3. J. Li, Y. Si, D. T. Nde, and H. J. Lee, Development of voltammetric nanobio-incorporated analytical method for protein biomarker specific to early diagnosis of lung cancer, Appl. Chem. Eng., 32, 461-466 (2021). https://doi.org/10.14478/ACE.2021.1057
  4. J. Li, Y. Si, and H. J. Lee, Recent research trend of biosensors for colorectal cancer specific protein biomarkers, Appl. Chem. Eng., 32, 253-259 (2021). https://doi.org/10.14478/ACE.2021.1040
  5. H. Kim, J. U. Lee, S. Song, S. Kim, and S. J. Sim, A shape-code nanoplasmonic biosensor for multiplex detection of Alzheimer's disease biomarkers, Biosens. Bioelectron., 101, 96-102 (2018). https://doi.org/10.1016/j.bios.2017.10.018
  6. C. Min, H. Ha, and J. Jeon, Development of fluorescent small molecules for imaging of Alzheimer's disease biomarkers, Appl. Chem. Eng., 32, 1-9 (2021).
  7. M. Supianto, J. Lim, and H. J. Lee, Development of lateral flow immunofluorescence assay applicable to lung cancer, Appl. Chem. Eng., 33, 173-178 (2022).
  8. R. R. Kumar, A. Kumar, C.-H. Chuang, and M. O. Shaikh, Recent advances and emerging trends in cancer biomarker detection technologies, Ind. Eng. Chem. Res., 62, 5691-5713 (2023). https://doi.org/10.1021/acs.iecr.2c04097
  9. E. Piktel, I. Levental, B. Durnas, P. A. Janmey, and R. Bucki, Plasma gelsolin: Indicator of inflammation and its potential as a diagnostic tool and therapeutic target, Int. J. Mol. Sci., 19, 2516 (2018).
  10. E. Dziurkowska and M. Wesolowski, Cortisol as a biomarker of mental disorder severity, J. Clin. Med., 10, 5204 (2021).
  11. B. Lerman, T. Harricharran, and O. O. Ogunwobi, Oxytocin and cancer: An emerging link, World J. Clin. Oncol., 9, 74-82 (2018).
  12. H. Xu, S. Fu, Q. Chen, M. Gu, J. Zhou, C. Liu, Y. Chen, and Z. Wang, The function of oxytocin: a potential biomarker for prostate cancer diagnosis and promoter of prostate cancer, Oncotarget, 8, 31215 (2017).
  13. A. H. Kemp, D. S. Quintana, R.-L. Kuhnert, K. Griffiths, I. B. Hickie, and A. J. Guastella, Oxytocin increases heart rate variability in humans at rest: implications for social approach-related motivation and capacity for social engagement, PLoS One, 7, e44014 (2012).
  14. H. Yamasue, Function and structure in social brain regions can link oxytocin-receptor genes with autistic social behavior, Brain Dev., 35, 111-8 (2013).
  15. A. Hering, B. Jieu, A. Jones, and M. Muttenthaler, Approaches to improve the quantitation of oxytocin in human serum by mass spectrometry, Front. Chem., 10, 889154 (2022).
  16. M. Li, R. D. Josephs, A. Daireaux, T. Choteau, S. Westwood, G. Martos, R. I. Wielgosz, and H. Li, Structurally related peptide impurity identification and accurate quantification for synthetic oxytocin by liquid chromatography-high-resolution mass spectrometry, Anal. Bioanal. Chem., 413, 1861-1870 (2021). https://doi.org/10.1007/s00216-021-03154-5
  17. M. Moerkerke, M. Peeters, L. de Vries, N. Daniels, J. Steyaert, K. Alaerts, and B. Boets, Endogenous oxytocin levels in autism-a meta-analysis, Brain Sci., 11, 1545 (2021).
  18. S. Mehrotra, P. Rai, K. Gautam, A. Saxena, R. Verma, V. Lahane, S. Singh, A. K. Yadav, S. Patnaik, S. Anbumani, S. Priya, and S. K. Sharma, Chitosan-carbon nanofiber based disposable bioelectrode for electrochemical detection of oxytocin, Food Chem., 418, 135965 (2023).
  19. F. A. Liu, N. Ardabili, I. Brown, H. Rafi, C. Cook, R. Nikopoulou, A. Lopez, S. Zou, M. R. Hartings, and A. G. Zestos, Modified sawhorse waveform for the voltammetric detection of oxytocin, J. Electrochem. Soc., 169, 017512 (2022).
  20. Y. Zhou, M. Liu, X. Liu, R. Jiang, Y. He, Q. Yao, H. Chen, and C. Fu, Rapid and sensitive fluorescence determination of oxytocin using nitrogen-doped carbon dots as fluorophores, J. Pharm. Biomed. Anal., 229, 115344 (2023).
  21. S. Rastogi, V. Kumari, V. Sharma, and F. J. Ahmad, Colorimetric detection of oxytocin in bottle gourd using cysteamine functionalized gold nanoparticle (Cys-AuNPs), Food Anal. Meth., 15, 2972-2983 (2022). https://doi.org/10.1007/s12161-022-02350-y
  22. Y. Suzuki, Development of magnetic nanobeads modified by artificial fluorescent peptides for the highly sensitive and selective analysis of oxytocin, Sensors, 20, 5956 (2020).
  23. K. Bong-Geun, Y. Sang Bin, H. Sukyeong, and N. Hyon Bin, Recent progress in colorimetric assays using the absorption of plasmonic gold nanoparticles, Appl. Chem. Eng., 35, 67-78 (2024). https://doi.org/10.14478/ACE.2024.1013
  24. V. Yesudasu, H. S. Pradhan, and R. J. Pandya, Recent progress in surface plasmon resonance based sensors: A comprehensive review, Heliyon, 7, e06321 (2021).
  25. Q. Wang, Z.-H. Ren, W.-M. Zhao, L. Wang, X. Yan, A.-s. Zhu, F.-m. Qiu, and K.-K. Zhang, Research advances on surface plasmon resonance biosensors, Nanoscale, 14, 564-591 (2022). https://doi.org/10.1039/D1NR05400G
  26. J. Li, S. H. Lee, D. K. Yoo, H. C. Woo, S. H. Jhung, M. Jovic, H. Girault, and H. J. Lee, A spatially multiplexed voltammetric magneto-sandwich assay involving Fe3O4/Fe-based metal-organic framework for dual liver cancer biomarkers, Sens. Actuators B Chem., 380, 133313 (2023).
  27. M. Supianto, D. K. Yoo, H. Hwang, H. B. Oh, S. H. Jhung, and H. J. Lee, Linker-preserved iron metal-organic framework-based lateral flow assay for sensitive transglutaminase 2 detection in urine through machine learning-assisted colorimetric analysis, ACS Sens., 9, 1321-1330 (2024).
  28. P. Sunghwan and L. Young-Sei, Scalable fabrications of mixed-matrix membranes via polymer modification-enabled in situ metal-organic framework formation for gas separation: A review, Appl. Chem. Eng., 34, 213-220 (2023). https://doi.org/10.14478/ACE.2023.1040
  29. Y. Wang, Z. Mao, Q. Chen, K. Koh, X. Hu, and H. Chen, Rapid and sensitive detection of PD-L1 exosomes using Cu-TCPP 2D MOF as a SPR sensitizer, Biosens. Bioelectron., 201, 113954 (2022).
  30. Y. Wang, Z. Niu, C. Xu, M. Zhan, K. Koh, J. Niu, and H. Chen, 2D MOF-enhanced SPR sensing platform: Facile and ultrasensitive detection of sulfamethazine via supramolecular probe, J. Hazard. Mater., 456, 131642 (2023).
  31. Z. Chen, X. Wang, H. Noh, G. Ayoub, G. W. Peterson, C. T. Buru, T. Islamoglu, and O. K. Farha, Scalable, room temperature, and water-based synthesis of functionalized zirconium-based metal-organic frameworks for toxic chemical removal, CrystEngComm, 21, 2409-2415 (2019). https://doi.org/10.1039/C9CE00213H
  32. S. Kim and H. J. Lee, Direct detection of alpha-1 antitrypsin in serum samples using surface plasmon resonance with a new aptamer-antibody sandwich assay, Anal. Chem., 87, 7235-40 (2015). https://doi.org/10.1021/acs.analchem.5b01192
  33. S. H. Lee, J. H. Back, H. J. Joo, D.-S. Lim, J. E. Lee, and H. J. Lee, Simultaneous detection method for two cardiac disease protein biomarkers on a single chip modified with mixed aptamers using surface plasmon resonance, Talanta, 267, 125232 (2024).
  34. L. Rahmidar, G. Gumilar, N. L. W. Septiani, C. Wulandari, M. Iqbal, S. Wustoni, and B. Yuliarto, Label-free and early detection of HER2 breast cancer biomarker based on UiO-66-NH2 modified gold chip (Au/UiO-66-NH2) using surface plasmon resonance technique, Microchem. J., 199, 109963 (2024).
  35. S. Kim, A. W. Wark, and H. J. Lee, Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance, Anal. Chem., 88, 7793-7799 (2016). https://doi.org/10.1021/acs.analchem.6b01825
  36. S. Kim and H. J. Lee, Direct detection of α-1 antitrypsin in serum samples using surface plasmon resonance with a new aptamer-antibody sandwich assay, Anal. Chem., 87, 7235-7240 (2015). https://doi.org/10.1021/acs.analchem.5b01192
  37. S. Kim, S. Lee, and H. J. Lee, An aptamer-aptamer sandwich assay with nanorod-enhanced surface plasmon resonance for attomolar concentration of norovirus capsid protein, Sens. Actuators B Chem., 273, 1029-1036 (2018). https://doi.org/10.1016/j.snb.2018.06.108
  38. H. J. Lee, A. W. Wark, and R. M. Corn, Enhanced bioaffinity sensing using surface plasmons, surface enzyme reactions, nanoparticles and diffraction gratings, Analyst, 133, 596-601 (2008). https://doi.org/10.1039/b718713k