• 제목/요약/키워드: Sequential Monte Carlo Simulation

검색결과 44건 처리시간 0.023초

풍력발전을 포함한 시스템의 발전량 적정성 평가를 위한 비순차 샘플링 방법 (A Random Sampling Method for Generation Adequacy Assessment Including Wind-Power)

  • 김광원
    • 조명전기설비학회논문지
    • /
    • 제25권5호
    • /
    • pp.45-53
    • /
    • 2011
  • This paper presents a novel random sampling method for generation adequacy assessment including wind-power. Although a time sequential sampling has advantages than a random sampling in its assessment results, it takes long assessment time. Therefore, an effective random sampling method for generation adequacy assessment is highly recommended to get specific reliability indices quickly. The proposed method is based on the Monte-Carlo simulation with state sampling and it can be applied to generation adequacy assessment with other intermittent power sources.

Choosing an optimal connecting place of a nuclear power plant to a power system using Monte Carlo and LHS methods

  • Kiomarsi, Farshid;Shojaei, Ali Asghar;Soltani, Sepehr
    • Nuclear Engineering and Technology
    • /
    • 제52권7호
    • /
    • pp.1587-1596
    • /
    • 2020
  • The location selection for nuclear power plants (NPP) is a strategic decision, which has significant impact operation of the plant and sustainable development of the region. Further, the ranking of the alternative locations and selection of the most suitable and efficient locations for NPPs is an important multi-criteria decision-making problem. In this paper, the non-sequential Monte Carlo probabilistic method and the Latin hypercube sampling probabilistic method are used to evaluate and select the optimal locations for NPP. These locations are identified by the power plant's onsite loads and the average of the lowest number of relay protection after the NPP's trip, based on electricity considerations. The results obtained from the proposed method indicate that in selecting the optimal location for an NPP after a power plant trip with the purpose of internal onsite loads of the power plant and the average of the lowest number of relay protection power system, on the IEEE RTS 24-bus system network given. This paper provides an effective and systematic study of the decision-making process for evaluating and selecting optimal locations for an NPP.

Probabilistic Assessment of Total Transfer Capability Using SQP and Weather Effects

  • Kim, Kyu-Ho;Park, Jin-Wook;Rhee, Sang-Bong;Bae, Sungwoo;Song, Kyung-Bin;Cha, Junmin;Lee, Kwang Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권5호
    • /
    • pp.1520-1526
    • /
    • 2014
  • This paper presents a probabilistic method to evaluate the total transfer capability (TTC) by considering the sequential quadratic programming and the uncertainty of weather conditions. After the initial TTC is calculated by sequential quadratic programming (SQP), the transient stability is checked by time simulation. Also because power systems are exposed to a variety of weather conditions the outage probability is increased due to the weather condition. The probabilistic approach is necessary to evaluate the TTC, and the Monte Carlo Simulation (MCS) is used to accomplish the probabilistic calculation of TTC by considering the various weather conditions.

An accelerated sequential sampling for estimating the reliability of N-parallel systems

  • Rekab, Kamel;Cheng, Yuan
    • International Journal of Reliability and Applications
    • /
    • 제14권2호
    • /
    • pp.71-78
    • /
    • 2013
  • The problem of designing an experiment to estimate the reliability of a system that has N subsystems connected in series where each subsystem n has n $T_n$ components connected in parallel is investigated both theoretically and by simulation. An accelerated sampling sheme is introduced. It is shown that the accelerated sampling scheme is asymptotically optimal as the total number of units goes to infinity. Numerical comparisons for a system that has two subsystems connected in series where each subsystem has two components connected in parallel are also given. They indicate that the accelerated sampling scheme performs better than the batch sequential sampling scheme and is nearly optimal.

  • PDF

SHM-based probabilistic representation of wind properties: Bayesian inference and model optimization

  • Ye, X.W.;Yuan, L.;Xi, P.S.;Liu, H.
    • Smart Structures and Systems
    • /
    • 제21권5호
    • /
    • pp.601-609
    • /
    • 2018
  • The estimated probabilistic model of wind data based on the conventional approach may have high discrepancy compared with the true distribution because of the uncertainty caused by the instrument error and limited monitoring data. A sequential quadratic programming (SQP) algorithm-based finite mixture modeling method has been developed in the companion paper and is conducted to formulate the joint probability density function (PDF) of wind speed and direction using the wind monitoring data of the investigated bridge. The established bivariate model of wind speed and direction only represents the features of available wind monitoring data. To characterize the stochastic properties of the wind parameters with the subsequent wind monitoring data, in this study, Bayesian inference approach considering the uncertainty is proposed to update the wind parameters in the bivariate probabilistic model. The slice sampling algorithm of Markov chain Monte Carlo (MCMC) method is applied to establish the multi-dimensional and complex posterior distribution which is analytically intractable. The numerical simulation examples for univariate and bivariate models are carried out to verify the effectiveness of the proposed method. In addition, the proposed Bayesian inference approach is used to update and optimize the parameters in the bivariate model using the wind monitoring data from the investigated bridge. The results indicate that the proposed Bayesian inference approach is feasible and can be employed to predict the bivariate distribution of wind speed and direction with limited monitoring data.

네트워크 신뢰도를 추정하기 위한 SMCS/SMPS 시뮬레이션 기법 (SMCS/SMPS Simulation Algorithms for Estimating Network Reliability)

  • 서재준
    • 산업경영시스템학회지
    • /
    • 제24권63호
    • /
    • pp.33-43
    • /
    • 2001
  • To estimate the reliability of a large and complex network with a small variance, we propose two dynamic Monte Carlo sampling methods: the sequential minimal cut set (SMCS) and the sequential minimal path set (SMPS) methods. These methods do not require all minimal cut sets or path sets to be given in advance and do not simulate all arcs at each trial, which can decrease the valiance of network reliability. Based on the proposed methods, we develop the importance sampling estimators, the total hazard (or safety) estimator and the hazard (or safety) importance sampling estimator, and compare the performance of these simulation estimators. It is found that these estimators can significantly reduce the variance of the raw simulation estimator and the usual importance sampling estimator. Especially, the SMCS algorithm is very effective in case that the failure probabilities of arcs are low. On the contrary, the SMPS algorithm is effective in case that the success Probabilities of arcs are low.

  • PDF

The Sequential Testing of Multiple Outliers in Linear Regression

  • Park, Jinpyo;Park, Heechang
    • Communications for Statistical Applications and Methods
    • /
    • 제8권2호
    • /
    • pp.337-346
    • /
    • 2001
  • In this paper we consider the problem of identifying and testing the outliers in linear regression. first we consider the problem for testing the null hypothesis of no outliers. The test based on the ratio of two scale estimates is proposed. We show the asymptotic distribution of the test statistic by Monte Carlo simulation and investigate its properties. Next we consider the problem of identifying the outliers. A forward sequential procedure based on the suggested test is proposed and shown to perform fairly well. The forward sequential procedure is unaffected by masking and swamping effects because the test statistic is based on robust estimate.

  • PDF

Nonparametric Procedures for Finding Minimum Effective Dose in a One-Way Layout

  • Kim, Hyeonjeong;Kim, Dongjae
    • Communications for Statistical Applications and Methods
    • /
    • 제9권3호
    • /
    • pp.693-701
    • /
    • 2002
  • When the lowest dose level compared with zero-dose control has significant difference in effect, it is referred as minimum effective dose (MED). In this paper, we discuss several nonparametric methods for finding MED using updated rank at each sequential test step in small sample size and suggest new nonparametric procedures based on placement. Monte Carlo Simulation is adapted to compare power and Familywise Error Rate(FWE) of the new procedures with those of discussed nonparametric tests for finding MED.

Robust inference for linear regression model based on weighted least squares

  • 박진표
    • Journal of the Korean Data and Information Science Society
    • /
    • 제13권2호
    • /
    • pp.271-284
    • /
    • 2002
  • In this paper we consider the robust inference for the parameter of linear regression model based on weighted least squares. First we consider the sequential test of multiple outliers. Next we suggest the way to assign a weight to each observation $(x_i,\;y_i)$ and recommend the robust inference for linear model. Finally, to check the performance of confidence interval for the slope using proposed method, we conducted a Monte Carlo simulation and presented some numerical results and examples.

  • PDF

철골구조물의 연쇄붕괴에 대한 민감도 해석 (Sensitivity Analysis of Steel Frames Subjected to Progressive Collapse)

  • 박준희;홍수민;김진구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.307-312
    • /
    • 2008
  • Local damage may cause sequential collapse of structure, which is called progressive collapse. Current progressive collapse analysis is based on the mean value of design variables. This deterministic approach has a low reliability as it doesn't consider uncertainty of variables. In this study the sensitivity of design variables for progressive collapse of structure is evaluated by Monte Calro simulation and Tornado diagram. The analysis results show that the behaviour of model structures is highly sensitive to variation of the yield force of beams and the structural damping ratio.

  • PDF