LPC 계수를 LSP 변환하는 방법에는 복소근, 실근, 비율 필터, 체비셰프 급수, 적응적 순차형 최소제곱 평균 방법(adaptive sequential LMS) 등이 있다. 이 방법들 중 음성 부호화기에서 주로 사용하는 실근 방법은 근을 구하기 위해 주파수 영역을 순차적으로 검색하기 때문에 계산시간이 많이 소요되는 단점을 갖는다. 본 논문에서는 LPC에서 LSP로 변환하는 4가지 고속 알고리즘을 제안한다. 첫 번째 방식에서는 검색간격에 멜 스케일을 적용하였고, 두 번째는 홀수번째 LSP 파라미터의 분포도를 이용하여 검색순서를 조정한 방법이다. 세 번째 방식과 네 번째 방식에서는 각각, 모음 특성, LSP 분포특성과 해상도를 이용하여 계산시간을 단축하였다. LSP 변환시간은 4가지 방법 모두 35~50% 단축되었다. 또한 실험결과에서는 각 알고리즘의 고유한 특성에 대하여 분석한다.
Welding fabrication invariantly involves three district sequential steps: preparation, actual process execution and post-weld inspection. One of the major problems in automating these steps and developing autonomous welding system, is the lack of proper sensing strategies. Conventionally, machine vision is used in robotic arc welding only for the correction of pre-taught welding paths in single pass. In this paper, developed vision processing techniques are detailed, and their application in welding fabrication is covered. The software for joint tracking system is finally proposed.
Text classification has been studied for a long time in the Natural Language Processing field. In this paper, we propose an article- and paragraph-level genre classification system using Word2Vec-based LSTM, GRU, and CNN models for large-scale English corpora. Both article- and paragraph-level classification performed best in accuracy with LSTM, which was followed by GRU and CNN in accuracy performance. Thus, it is to be confirmed that in evaluating the classification performance of LSTM, GRU, and CNN, the word sequential information for articles is better than the word feature extraction for paragraphs when the pre-trained Word2Vec-based word embeddings are used in both deep learning-based article- and paragraph-level classification tasks.
Communications for Statistical Applications and Methods
/
제30권6호
/
pp.551-560
/
2023
Recently, there has been significant research into the recognition of human activities using three-dimensional sequential skeleton data captured by the Kinect depth sensor. Many of these studies employ deep learning models. This study introduces a novel feature selection method for this data and analyzes it using machine learning models. Due to the high-dimensional nature of the original Kinect data, effective feature extraction methods are required to address the classification challenge. In this research, we propose using the first four moments as predictors to represent the distribution of joint sequences and evaluate their effectiveness using two datasets: The exergame dataset, consisting of three activities, and the MSR daily activity dataset, composed of ten activities. The results show that the accuracy of our approach outperforms existing methods on average across different classifiers.
본 논문에서는 다중 클래스 데이터를 위한 특징 추출 방법을 최적화하는 기법을 제안한다 제안된 특징 추출 기법은 분류 오차에 기반한 방법으로 특징 공간(feature space)을 탐색하여 가우시안 최대우도 분류기 (Gaussian ML Classifier)의 분류오차(classification error)가 최소가 되도록 하는 특징벡터 집합을 구하는 방법이다 제안된 방법은 임의의 초기 특징벡터를 설정한 후 steepest descent 알고리즘을 적용하여 분류오차가 감소하는 방향으로 초기벡터를 갱신시킨다 본 논문에서는 순차탐색 및 전체탐색 두 가지의 방법을 제안하며 순차탐색은 추가로 특징벡터를 구하는 경우 이미 구해진 특징벡터를 포함하여 최소의 분류오차를 얻을 수 있는 특징벡터를 구한다 반면에 전체탐색 방법은 추가의 특징벡터를 구할 경우 새로운 초기 특징벡터 집합을 설정하여 이미 구해진 특징벡터를 포함하는 제약을 받지 않는다. 실험결과 제안된 두 가지 방법은 기존의 특징추출 방법보다 우수한 성능을 보여주고 있다.
The effect of cryopreservation on extracellular matrix was studied with the ultimate objective of permiting a prediction of the tendency of aorta conduit tissue to calcify following transplantation. Cryopreserved and fresh porcine aorta conduit tissues were extracted using guanidine-hydrochloride (Gdn-HCl) followed by sequential digestion of the tissues with collagenase, elastase, and papain. Glycosaminoglycans (GAGs) of the proteoglycans (PGs) were isolated and quantitated. Gdn-HCl extracted about 61% and 62% of the total GAG (proteoqlycan) material from cryopreserved and fresh tissues, respectively. Collagenasesolubilized proteoglycans from Gdn-HCl extracted tissue represented 20% and 13%, respectively, of the total GAGs present in cryopreserved and fresh tissues. Subsequent elastase hydrolysis of collagenase-digested tissue released about 11% of total GAGs from cryopreserved tissue and 16% from fresh tissue. The remaining 8%, from cryopreserved tissue, and 9%, from fresh tissue, of the total GAGs were obtained after using a papain hydrolysis. There was essentially no difference between fresh and cryopreserved tissues in the relative distribution of proteoglycans in the extracts and digestions except in the initial digestion step where more proteoglycans were obtained from collagenase solubilization of cryopreserved tissue than fresh tissue (p<0.05). The histologic status of the fresh and cryopreserved porcine aortic conduit did not differ markedly. The normal tissue architecture was not affected markedly by the cryopreservation procedure as neither alteration of elastic structure, fibrous proteins nor alteration of nuclear distribution or smooth muscle cell morphology was detected. Quantitative tissue mineral studies revealed that the mean calcium content of the cryopreserved aorta conduit tissue $(165{\pm}3\;{\mu}g/g\;wet\;tissue)$ was higher than that of the fresh tissue $(105{\pm}4\;{\mu}g/g\;wet\;tissue)$$(p<0.05)$. The mean phosphorus content was $703{\pm}35\;{\mu}g$ wet tissue from cryopreserved tissue and $720{\pm}26\;{\mu}g$ wet tissue from fresh tissue. The study indicates that there is no significant alteration in the distribution of PGs in properly cryopreserved tissue, but the total calcium level appears to be increased in tissue cryopreserved by the cryopreservation process used in this study.
SNS 등의 보급으로 인해 Web 기반의 소비자 생성 데이터는 기하급수적으로 늘어나는 추세이다. 수많은 데이터 속에서 사용자의 관심에 맞는 콘텐츠를 정확히 추출하는 것은 여러 분야에서 중요하다. 특히 비즈니스 분야에서는 많은 사용자들 속에서 자신들에게 적합한 고객을 찾아 마케팅 정책을 수립하는 것이 중요하다. 본 논문에서는 트위터의 팔로우-팔로잉 관계를 통해 각 계정에 관심이 있는 고객들을 중심으로 중요한 정보를 얻고자 한다. 현재 트위터의 팔로워 간의 관계는 사용자의 세부 관심 사항을 반영하지 않는다. 그러므로 본 연구에서는 팔로우들의 트윗에 대한 키워드 추출 방법을 사용하여 세부 관심 사항을 파악하려고 한다. 이를 위해 국내 상업 트위터 계정 2곳을 선정하여 팔로워로부터 수집한 텍스트 데이터의 마이닝 핵심 문구에 대한 순차 패턴 평가 지표를 적용한다.
본 논문에서는 도서관이나 대형서점의 서고에서 일반인들인 보고난 도서가 제자리에 있지 않아 이를 사서가 찾아야 할 시 문제점이었던 직접 탐색을 제어탐색으로 행할 수 있는 방법론을 제안하고자 한다. 이를 위해 영상처리 기술을 적용하고자 한다. 즉, 현재는 사서가 제자리에 꽃혀 있지 않은 도서를 찾기 위해 전체 서고를 직접 탐색해야 하는 문제가 있었다. 이 같은 문제를 영상카메라에 의해 촬영된 영상에서 도서의 경계 영역을 에지연산자와 Hough 변환을 적용하여 찾는다. 이후 추출된 도서들의 경계 영역으로부터 투영에 의한 히스토그램을 생성하여 이로부터 타이틀 영역을 추출하고 도서명의 문자수, 저자명의 문자수, 출판사명의 문자수 그리고 이의 나열 순서 등을 토대로 도서가 있을 수 있는 후보 영역을 추출한다. 최종적으로 곡선적합과 회귀직선 추출 등을 통해 도서위치 최종 후보 영역을 추출할 수 있었으며 실험에 의해 본 논문의 유용성을 입증하고자 한다.
본 논문에서는 필기체 문자의 Convex-Concave한 곡선 특징을 문자로 변환하고 추출된 문자를 Smith-Waterman 정렬 알고리즘을 이용하여 온라인 필기체 숫자 인식 방법을 제안한다. 필기체 숫자 인식을 위한 입력 데이터는 시간에 순서적인 좌표로 순서화하고 전처리의 입력데이터로 적용된다. 필기자의 개성이 표현된 필기체 문자는 크기, 회전, 곡선 비율이 다양한 형태로 나타난다. 따라서 본 논문에서는 곡선의 Convex-Concave 특징을 이용하여 크기, 회전에 강인한 특징을 추출한다. 추출된 특징은 문자로 변환하고 Smith-Waterman 정렬 알고리즘의 입력데이터로 적용한다. 본 논문에서는 실시간 필기체 숫자를 대상으로 실험한 결과, 오류역전파 신경 회로망을 적용한 것과 비교하여 제안된 방법이 좋은 성능을 보였다.
본 논문은 이동전화 (Cellular phone)를 통해 실시간으로 습득된 음성으로부터 사람의 감성 상태를 평상 혹은 화남으로 인식할 수 있는 음성 감성인식 시스템을 제안하였다. 일반적으로 이동전화를 통해 수신된 음성은 화자의 환경 잡음과 네트워크 잡음을 포함하고 있어 음성 신호의 감성특정을 왜곡하게 되고 이로 인해 인식 시스템에 심각한 성능저하를 초래하게 된다. 본 논문에서는 이러한 잡음 영향을 최소화하기 위해 비교적 단순한 구조와 적은 연산량을 가진 MA (Moving Average) 필터를 감성 특정벡터에 적용해서 잡음에 의한 시스템 성능저하를 최소화하였다. 또한 특정벡터를 최적화할 수 있는 SFS (Sequential Forward Selection) 기법을 사용해서 제안 감성인식 시스템의 성능을 한층 더 안 정화시켰으며 감성 패턴 분류기로는 k-NN과 SVM을 비교하였다. 실험 결과 제안 시스템은 이동통신 잡음 환경에서 약 86.5%의 높은 인식률을 달성할 수 있어 향후 고객 센터 (Call-center) 등에 유용하게 사용될 수 있을 것으로 기대된다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.