Extracellular Matrix of Fresh and Cryopreserved Porcine Aortic Tissues

  • Received : 1996.12.17
  • Published : 1997.03.31

Abstract

The effect of cryopreservation on extracellular matrix was studied with the ultimate objective of permiting a prediction of the tendency of aorta conduit tissue to calcify following transplantation. Cryopreserved and fresh porcine aorta conduit tissues were extracted using guanidine-hydrochloride (Gdn-HCl) followed by sequential digestion of the tissues with collagenase, elastase, and papain. Glycosaminoglycans (GAGs) of the proteoglycans (PGs) were isolated and quantitated. Gdn-HCl extracted about 61% and 62% of the total GAG (proteoqlycan) material from cryopreserved and fresh tissues, respectively. Collagenasesolubilized proteoglycans from Gdn-HCl extracted tissue represented 20% and 13%, respectively, of the total GAGs present in cryopreserved and fresh tissues. Subsequent elastase hydrolysis of collagenase-digested tissue released about 11% of total GAGs from cryopreserved tissue and 16% from fresh tissue. The remaining 8%, from cryopreserved tissue, and 9%, from fresh tissue, of the total GAGs were obtained after using a papain hydrolysis. There was essentially no difference between fresh and cryopreserved tissues in the relative distribution of proteoglycans in the extracts and digestions except in the initial digestion step where more proteoglycans were obtained from collagenase solubilization of cryopreserved tissue than fresh tissue (p<0.05). The histologic status of the fresh and cryopreserved porcine aortic conduit did not differ markedly. The normal tissue architecture was not affected markedly by the cryopreservation procedure as neither alteration of elastic structure, fibrous proteins nor alteration of nuclear distribution or smooth muscle cell morphology was detected. Quantitative tissue mineral studies revealed that the mean calcium content of the cryopreserved aorta conduit tissue $(165{\pm}3\;{\mu}g/g\;wet\;tissue)$ was higher than that of the fresh tissue $(105{\pm}4\;{\mu}g/g\;wet\;tissue)$ $(p<0.05)$. The mean phosphorus content was $703{\pm}35\;{\mu}g$ wet tissue from cryopreserved tissue and $720{\pm}26\;{\mu}g$ wet tissue from fresh tissue. The study indicates that there is no significant alteration in the distribution of PGs in properly cryopreserved tissue, but the total calcium level appears to be increased in tissue cryopreserved by the cryopreservation process used in this study.

Keywords

References

  1. J. Cell Biol. v.41 Anderson, H.C. https://doi.org/10.1083/jcb.41.1.59
  2. Scanning Electron Microsc. v.2 Anderson, H.C.
  3. Thorax v.40 Armiger, L.C.;Thomson, R.W.;Strickett, M.G.;Barratt-Boys, B.G. https://doi.org/10.1136/thx.40.10.778
  4. Anal. Biochem. v.110 Bauer, P.J. https://doi.org/10.1016/0003-2697(81)90112-3
  5. Nutrition and Metabolism in Medical Practice Berenson, G.S.;Radhakrishnamurthy, B.;Srinivason, S.R.;Dalferes, E.R. Jr.;Halpern, S.L.(ed.);Lubby, A.L.(ed.);Berenson, G.S.(ed.)
  6. Anal. Biochem. v.4 Bitter, T.;Muir, H. https://doi.org/10.1016/0003-2697(62)90095-7
  7. J. Biol. Chem. v.243 Carlson, D.M.
  8. J. Biol. Chem. v.257 Castellot, J.J. Jr.;Favreau, L.V.;Karnovsky, M.J.;Rosenberg, R.
  9. Anal. Chem. v.28 Chen, P.S.;Toribara, T.Y.;Warner, H. https://doi.org/10.1021/ac60119a033
  10. J. Surg. Res. v.46 Cochran, R.P.;Kunzelman, K.S. https://doi.org/10.1016/0022-4804(89)90027-9
  11. J. Thorac. Cardiovasc. Surg. v.87 Fontan, F.;Choussat, A.;Deville, C.;Doutremepuich, C.;Coupilland, J.;Vosa, C.
  12. Transplant Proc. v.10 no.SUP. 1 Gonzalez-Lavin, L.;Bianchi, J.;Graf, D.;Amini, S.;Gordon, C.I.
  13. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.28 Han, B.;Lee, S.;Park, M.;Chae, Q.
  14. Ann. Surg. v.177 Heslop, B.F.;Wilson, S.E.;Hardy, B.E. https://doi.org/10.1097/00000658-197303000-00010
  15. Science v.154 Hirschman, A.;Dziewiatkowski, D. https://doi.org/10.1126/science.154.3747.393
  16. Cardiovasc. Res. v.24 Hu, J.;Gilmer, L.;Hopkins, R.;Wolfinbarger, L. https://doi.org/10.1093/cvr/24.7.528
  17. Hu, J.
  18. Eur. J. Clin. Chem. Clin. Biochem. v.29 Janssen, J.W.;Helbing, A.R.
  19. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.28 Jeon, O.;Moon, W.;Kim, D.
  20. J. Thorac. Cardiovasc. Surg. v.96 Jonas, R.A.;Ziemer, G.;Britton, L.;Armiger, L.C.
  21. Orthop. v.172 Joseph, A.B.
  22. Transplantation v.49 Khatib, H.E.;Lupinetti, M. https://doi.org/10.1097/00007890-199004000-00022
  23. Cardiac Reconstructions with Allograft Valves Lange, P.L.;Hopkins, R.A.;Hopkins, R.A.(ed.)
  24. Calcif. Tissue Res. v.13 Larsson, S.;Ray, R.;Kuettner, K. https://doi.org/10.1007/BF02015417
  25. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.28 Lee, H.;Chung, M.;Lee, C.;Chun, H.;Kho, Y.
  26. Biochem. Biophys. Acta. v.404 Lohmander, S.;Hjerpe, A. https://doi.org/10.1016/0304-4165(75)90151-8
  27. Pathology v.21 Maxwell, L.;Gavin, J.B.;Barratt-Boyes, B.G. https://doi.org/10.3109/00313028909059521
  28. Anal. Chim. Acta. v.53 Michaylova, V.;Ilkova, P. https://doi.org/10.1016/S0003-2670(01)80088-X
  29. J. Cardiac. Surg. v.2 Miller, D.C.;Shumway, N.E. https://doi.org/10.1111/jocs.1987.2.1s.185
  30. J. Bone Joint Surg. v.64A Mitchell, N.;Shepard, N.;Harrod, J.
  31. Transplantation v.41 Pober, J.S.;Collins, T.;Gimbrone, M.A. Jr.;Libby, P.;Reiss, C.S. https://doi.org/10.1097/00007890-198602000-00001
  32. Biochem. J. v.259 Rowatt, E.;Williams, R.J.P. https://doi.org/10.1042/bj2590295
  33. Ann. Rev. Cell. Biol. v.4 Ruoslathi, E. https://doi.org/10.1146/annurev.cb.04.110188.001305
  34. J. Biol. Chem. v.264 Ruoslathi, E.
  35. J. Thorac. Cardiovasc. Surg. v.80 Saravalli, O.A.;Somerville, J.;Jefferson, K.E.
  36. Am. J. Pathol. v.123 Schoen, F.J.;Tsao, J.W.;Levy, R.J.
  37. J. Ultrastruct. Res. v.33 Thyberg, J.;Fiberg, U. https://doi.org/10.1016/S0022-5320(70)90181-4
  38. Ann. Surg. v.166 Urist, M.R.;Adams, J.M. https://doi.org/10.1097/00000658-196707000-00001
  39. J. Biol. Chem. v.248 Woessner, J.E.
  40. J. Cardiac. Surg. v.3 Yankah, A.C.;Wottge, H.U.;Muller-Ruchholtz, W. https://doi.org/10.1111/j.1540-8191.1988.tb00247.x
  41. J. Biochem. Mol. Biol. (formerly Korean Biochem. J.) v.28 Yoon, Y.S.;Shin, I.;Kim, J.W.;Kang, K.W.;Joe, C.O.