• Title/Summary/Keyword: Sequence-to-Sequence Model

검색결과 1,646건 처리시간 0.029초

조선기자재 산업에서의 방문 순서를 고려한 차량 적재 모형 (Vehicle Loading Model Considering Routing Sequence in Shipbuilding Material)

  • 이종호;신재영
    • 한국항해항만학회지
    • /
    • 제31권8호
    • /
    • pp.711-716
    • /
    • 2007
  • 컨테이너에 화물을 적재함에 있어서 고려해야할 점으로 컨테이너의 적재율을 들 수 있다. 단순히 제한된 공간에 보다 많은 양의 화물을 적재하여 비용을 낮추고자 하는 노력은 꾸준히 계속되어 왔다. 하지만 방문순서를 고려해야만 하는 화물의 경우는 다르다. 조선기자재와 같은 대형 화물들의 경우 방문순서를 고려하지 않았을 경우 하역작업에서 화물 재 조작 또는 하역 작업이 불가능한 상황이 발생할 수 있기 때문이다. 본 연구에서는 화물 적재 시 방문 순서를 고려하는 문제를 해결하고자 하며, 이에 방문 순서와 적재율을 동시에 고려한 컨테이너 혼재모형과 그 해법을 제시하고자 한다.

IPM모터의 턴쇼트 고장모델에 관한 연구 (Development of Inter Turn Short Fault Model of IPM Motor)

  • 구본관
    • 전력전자학회논문지
    • /
    • 제20권4호
    • /
    • pp.305-312
    • /
    • 2015
  • In this study, inter-turn short fault models of interior permanent magnet synchronous motors (IPMSM) are developed by adding saliency modeling to surface-mounted permanent magnet motor models. The saliency model is obtained using the deformed flux models based on both fault-winding flux information and inductance variations caused by cross-flux linkages that depend on the distribution of the same phase windings. By assuming the balanced three-phase current injection, we obtain the positive and negative sequence voltages and the fault current in the positive and the negative synchronous reference frames. The output torque model is developed by adding the magnet and the reluctance torque, which are derived from the developed models. To verify the proposed IPMSM model with an inter-turn short fault, finite element method-based simulation and experimental measurement results are presented.

연관규칙과 순차패턴을 이용한 프로세스 마이닝 (A Process Mining using Association Rule and Sequence Pattern)

  • 정소영;권수태
    • 산업경영시스템학회지
    • /
    • 제31권2호
    • /
    • pp.104-111
    • /
    • 2008
  • A process mining is considered to support the discovery of business process for unstructured process model, and a process mining algorithm by using the associated rule and sequence pattern of data mining is developed to extract information about processes from event-log, and to discover process of alternative, concurrent and hidden activities. Some numerical examples are presented to show the effectiveness and efficiency of the algorithm.

Common Due-Date Assignment and Scheduling on Parallel Machines with Sequence-Dependent Setup Times

  • Kim, Jun-Gyu;Yu, Jae-Min;Lee, Dong-Ho
    • Management Science and Financial Engineering
    • /
    • 제19권1호
    • /
    • pp.29-36
    • /
    • 2013
  • This paper considers common due-date assignment and scheduling on parallel machines. The main decisions are: (a) deter-mining the common due-date; (b) allocating jobs to machines; and (c) sequencing the jobs assigned to each machine. The objective is to minimize the sum of the penalties associated with common due-date assignment, earliness and tardiness. As an extension of the existing studies on the problem, we consider sequence-dependent setup times that depend on the type of job just completed and on the job to be processed. The sequence-dependent setups, commonly found in various manufacturing systems, make the problem much more complicated. To represent the problem more clearly, a mixed integer programming model is suggested, and due to the complexity of the problem, two heuristics, one with individual sequence-dependent setup times and the other with aggregated sequence-dependent setup times, are suggested after analyzing the characteristics of the problem. Computational experiments were done on a number of test instances and the results are reported.

삽교호 유입량 예측을 위한 LSTM 모형의 적용성 평가 (Evaluation of LSTM Model for Inflow Prediction of Lake Sapgye)

  • 황병기
    • 한국산학기술학회논문지
    • /
    • 제22권4호
    • /
    • pp.287-294
    • /
    • 2021
  • 삽교호로 유입하는 곡교천 유역의 홍수시 유출량을 추정하기 위해서 Tensorflow를 활용하여 파이썬 기반의 LSTM 모형을 구축하였다. 층의 깊이가 성능에 미치는 영향을 분석하기 위해, 은닉층의 깊이를 2, 4, 6층으로 증가시키면서, 선행시간 1시간부터 5시간까지 예측을 수행하였으며, 은닉층의 개수가 4개일 때가 가장 우수한 성능을 나타내었다. 학습에 사용하는 입력자료의 길이 즉, 시퀀스길이가 모형의 성능에 미치는 영향을 파악하고자 시퀀스길이를 3시간, 5시간, 7시간으로 증가시키면서 모형을 실행한 결과, 시퀀스길이가 3시간 일 때, 전 시간대에 걸쳐 예측 성능이 우수한 것으로 분석되었다. 모형 검증에서 극한 강우 3건에 대하여 예측을 수행한 결과 선행시간 1시간에 대하여 평균 NSE 0.96 이상의 높은 정확도를 나타내었으며, 선행시간 2시간 이상에 대하여 정확도는 점차적으로 낮아지는 것으로 확인되었다. 결론적으로 시퀀스길이 3시간을 사용하여 선행시간 1시간에 대한 예측을 수행한다면 곡교천 강청 관측소의 홍수위를 높은 수준의 정확도로 예측할 수 있음을 확인하였다.

Identification of Novel Cupredoxin Homologs Using Overlapped Conserved Residues Based Approach

  • Goyal, Amit;Madan, Bharat;Hwang, Kyu-Suk;Lee, Sun-Gu
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권1호
    • /
    • pp.127-136
    • /
    • 2015
  • Cupredoxin-like proteins are mainly copper-binding proteins that conserve a typical rigid Greek-key arrangement consisting of an eight-stranded β-sandwich, even though they share as little as 10-15% sequence similarity. The electron transport function of the Cupredoxins is critical for respiration and photosynthesis, and the proteins have therapeutic potential. Despite their crucial biological functions, the identification of the distant Cupredoxin homologs has been a difficult task due to their low sequence identity. In this study, the overlapped conserved residue (OCR) fingerprint for the Cupredoxin superfamily, which consists of conserved residues in three aspects (i.e., the sequence, structure, and intramolecular interaction), was used to detect the novel Cupredoxin homologs in the NCBI non-redundant protein sequence database. The OCR fingerprint could identify 54 potential Cupredoxin sequences, which were validated by scanning them against the conserved Cupredoxin motif near the Cu-binding site. This study also attempted to model the 3D structures and to predict the functions of the identified potential Cupredoxins. This study suggests that the OCR-based approach can be used efficiently to detect novel homologous proteins with low sequence identity, such as Cupredoxins.

자연어 처리 모델을 활용한 퍼징 시드 생성 기법 (A Fuzzing Seed Generation Technique Using Natural Language Processing Model)

  • 김동영;전상훈;류민수;김휘강
    • 정보보호학회논문지
    • /
    • 제32권2호
    • /
    • pp.417-437
    • /
    • 2022
  • Fuzzing에서 seed corpus의 품질은 취약점을 보다 빠르게 찾기 위해서 중요한 요소 중 하나라고 할 수 있다. 이에 dynamic taint analysis와 symbolic execution 기법 등을 활용하여 효율적인 seed corpus를 생성하는 연구들이 진행되어왔으나, 높은 전문 지식이 요구되고, 낮은 coverage로 인해 광범위한 활용에 제약이 있었다. 이에 본 논문에서는 자연어 처리 모델인 Sequence-to-Sequence 모델을 기반으로 seed corpus를 생성하는 DDRFuzz 시스템을 제안한다. 본 논문에서 제안하는 시스템은 멀티미디어 파일을 입력값으로 하는 5개의 오픈소스 프로젝트를 대상으로 관련 연구들과 비교하여 효과를 검증하였다. 실험 결과, DDRFuzz가 coverage와 crash count 측면에서 가장 뛰어난 성능을 나타냄을 확인할 수 있었고, 또한 신규 취약점을 포함하여 총 3개의 취약점을 탐지하였다.

계층적 포인터 네트워크를 이용한 상호참조해결 (Coreference Resolution using Hierarchical Pointer Networks)

  • 박천음;이창기
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권9호
    • /
    • pp.542-549
    • /
    • 2017
  • Sequence-to-sequence 모델과 이와 유사한 포인터 네트워크는 입력이 여러 문장으로 이루어 지거나 입력 문장의 길이가 길어지면 성능이 저하되는 문제가 있다. 이러한 문제를 해결하기 위해 본 논문에서는 여러 문장으로 이루어진 입력열을 단어 레벨과 문장 레벨로 인코딩을 수행하고, 디코딩에서 단어 레벨과 문장 레벨 정보를 모두 이용하는 계층적 포인터 네트워크 모델을 제안하고, 이를 이용하여 모든 멘션(mention)에 대한 상호참조해결을 수행하는 계층적 포인터 네트워크 기반 상호참조해결을 제안한다. 실험 결과, 본 논문에서 제안한 모델이 정확률 87.07%, 재현율 65.39%, CoNLL F1 74.61%의 성능을 보였으며, 기존 규칙기반 모델 대비 24.01%의 성능 향상을 보였다.

확장된 LSTM 오토인코더 기반 이상 시퀀스 탐지 기법 (An Anomalous Sequence Detection Method Based on An Extended LSTM Autoencoder)

  • 이주연;이기용
    • 한국전자거래학회지
    • /
    • 제26권1호
    • /
    • pp.127-140
    • /
    • 2021
  • 최근 센서 측정 데이터, 구매이력 등과 같이 시간 정보를 포함하는 시퀀스(sequence) 데이터가 다양한 응용에서 발생되고 있다. 주어진 시퀀스들 중 다른 시퀀스들과 매우 상이한 이상(anomalous) 시퀀스를 탐지하는 기법들은 지금까지 많이 연구되어왔으나 이들 대부분은 주로 시퀀스 내 원소들의 순서만을 고려하여 이상 시퀀스를 찾는다는 한계가 있다. 따라서 본 논문에서는 원소들의 순서와 원소들 간의 시간 간격 모두를 고려하는 새로운 이상 시퀀스 탐지 기법을 제안한다. 본 논문에서 제안하는 방법은 확장된 LSTM 오토인코더 모델을 사용한다. 이 모델은 시퀀스를 해당 시퀀스 내 원소들의 순서와 시간 간격 모두를 효과적으로 학습할 수 있는 형태로 변환하는 층을 추가로 가진다. 제안방법은 확장된 LSTM 오토인코더 모델로 주어진 시퀀스들의 특징을 학습한 뒤, 해당 모델이 잘 복원하지 못하는 시퀀스를 이상 시퀀스로 탐지한다. 본 논문에서는 정상 시퀀스와 이상 시퀀스를 혼합한 가상 데이터를 사용하여 제안 방법이 전통적인 LSTM 오토인코더만을 사용하는 방법과 비교하여 100%에 가까운 정확도를 나타냄을 보인다.

Sequence-Pair 기반의 플로어플랜을 위한 개선된 Simulated-Annealing 기법 (Improved Simulated-Annealing Technique for Sequence-Pair based Floorplan)

  • 성영태;허성우
    • 대한전자공학회논문지SD
    • /
    • 제46권4호
    • /
    • pp.28-36
    • /
    • 2009
  • Sequence-Pair(SP) 모델은 모듈간의 위상 관계를 표현하는 방법으로써, 일반적으로 SP 모델에 기반한 플로어플래너(floorplanner)는 Simulated-Annealing(SA) 알고리즘을 통해 해를 탐색한다. 다양한 논문에서 SP와 SA 기반 배치 알고리즘의 성능 향상을 위해 SP의 평가 함수의 개선, SA의 스케줄링 기법 향상과 변형 함수의 개선 등을 모색하였다. 제안 기법은 기존의 SA 프레임웍을 수정한 2단계 SA 알고리즘으로써, 전 단계에선 SP로부터 구한 플로어플랜에 압축기법을 적용하여 모듈 사이에 존재하는 빈 공간을 가능한 최소화시켰다. 압축기법이 적용된 플로어플랜으로터 SP를 얻고, 이를 변환함으로써 해 공간을 탐색해 간다. 해가 기준 값에 수렴되었다고 판단되면 전 단계의 SA 기반 검색을 중단하고 압축기법을 사용하지 않은 기존의 SA 프레임웍을 이용하여 최적 해를 계속 탐색해 간다. MCNC 벤치마크 회로를 이용한 실험을 통해 제안 기법이 SA의 해 탐색 과정에 끼치는 효과를 보이며, 제안 기법을 통해 얻은 결과가 기존의 SA 기반 알고리즘으로 구한 결과보다 우수함을 보인다.