Jongmin J. Lee;Phillip J. Tirman;Yongmin Chang;Hun-Kyu Ryeom;Sang-Kwon Lee;Yong-Sun Kim;Duk-Sik Kang
Korean Journal of Radiology
/
v.1
no.3
/
pp.142-151
/
2000
Objective: To determine the optimal scan timing for contrast-enhanced magnetic resonance angiography and to evaluate a new timing method based on the arteriovenous circulation time. Materials and Methods: Eighty-nine contrast-enhanced magnetic resonance angiographic examinations were performed mainly in the extremities. A 1.5T scanner with a 3-D turbo-FLASH sequence was used, and during each study, two consecutive arterial phases and one venous phase were acquired. Scan delay time was calculated from the time-intensity curve by the traditional (n = 48) and/or the new (n = 41) method. This latter was based on arteriovenous circulation time rather than peak arterial enhancement time, as used in the traditional method. The numbers of first-phase images showing a properly enhanced arterial phase were compared between the two methods. Results: Mean scan delay time was 5.4 sec longer with the new method than with the traditional. Properly enhanced first-phase images were found in 65% of cases (31/48) using the traditional timing method, and 95% (39/41) using the new method. When cases in which there was mismatch between the target vessel and the time-intensity curve acquisition site are excluded, erroneous acquisition occurred in seven cases with the traditional method, but in none with the new method. Conclusion: The calculation of scan delay time on the basis of arteriovenous circulation time provides better timing for arterial phase acquisition than the traditional method.
Jegadeesh Raman;Young-Joon Ko;Jeong-Seon Kim;Da-Hye Kim;Soo-Jin Kim
Journal of Microbiology and Biotechnology
/
v.34
no.3
/
pp.710-724
/
2024
Flavobacterium can synthesize xanthophyll, particularly the pigment zeaxanthin, which has significant economic value in nutrition and pharmaceuticals. Recently, the use of carotenoid biosynthesis by bacteria and yeast fermentation technology has shown to be very efficient and offers significant advantages in large-scale production, cost-effectiveness, and safety. In the present study, JSWR-1 strain capable of producing xanthophyll pigment was isolated from a freshwater reservoir in Wanju-gun, Republic of Korea. Based on the morphological, physiological, and molecular characteristics, JSWR-1 classified as belonging to the Flavobacterium species. The bacterium is strictly aerobic, Gram-negative, rod-shaped, and psychrophilic. The completed genome sequence of the strain Flavobacterium sp. JSWR-1 is predicted to be a single circular 3,425,829-bp chromosome with a G+C content of 35.2% and 2,941 protein-coding genes. The optimization of carotenoid production was achieved by small-scale cultivation, resulting in zeaxanthin being identified as the predominant carotenoid pigment. The enhancement of zeaxanthin biosynthesis by applying different light-irradiation, variations in pH and temperature, and adding carbon and nitrogen supplies to the growth medium. A significant increase in intracellular zeaxanthin concentrations was also recorded during fed-batch fermentation achieving a maximum of 16.69 ± 0.71 mg/l, corresponding to a product yield of 4.05 ± 0.15 mg zeaxanthin per gram cell dry weight. Batch and fed-batch culture extracts exhibit significant antioxidant activity. The results demonstrated that the JSWR-1 strain can potentially serve as a source for zeaxanthin biosynthesis.
In the biopharmaceutical contract manufacturing organization (CMO) business, establishing a production schedule that satisfies the due date for various customer orders is crucial for competitiveness. In a CMO process, each order consists of multiple batches that can be allocated to multiple production lines in small batch units for parallel production. This study proposes a meta-heuristic algorithm to establish a scheduling plan that minimizes the total delivery delay of orders in a CMO process with identical parallel machine. Inspired by biological evolution, the proposed algorithm generates random data structures similar to chromosomes to solve specific problems and effectively explores various solutions through operations such as crossover and mutation. Based on real-world data provided by a domestic CMO company, computer experiments were conducted to verify that the proposed algorithm produces superior scheduling plans compared to expert algorithms used by the company and commercial optimization packages, within a reasonable computation time.
Quantitative analysis of MR spectrum depending on mole concentration of the contrast media in cereberal metabolite phantom was performed. PRESS pulse sequence was used to obtain MR spectrum at 3.0T MRI system (Archieva, Philips Healthcare, Best, Netherland), and the phantom contains brain metabolites such as N-Acetyl Asparatate (NAA), Choline (Cho), Creatine (Cr) and Lactate (Lac). In this study, optimization of MRS PRESS pulse sequency depending on the concentration of contrast media (0, 0.1 and $0.3mmol/{\ell}$) was evaluated for various repetition time(TR; 1500, 1700 and 2000 ms). In control (cotrast-media-free) group, NAA and Cho signals were the highest at TR 2000 ms than at 1700 and 1500 ms. Cr had the highest peak signal at TR 1500 ms. When concentration of contrast media was $0.1mmol/{\ell}$, the metabolites were increased NAA 73%, Cho 249%, Cr 37% at TR 1700 ms compared with other TR, and also signal increased at $0.3mmol/{\ell}$, In $0.5mmol/{\ell}$ of contrast agent, cerebral metabolite peaks reduced, especially when TR 1500 ms and 2000 ms they decreased below those of control group. The ratio of metabolite peaks such as NAA/Cr and Cho/Cr decreased as the concentration of the contrast agent increased from 0.1 to $0.5mmol/{\ell}$. Authors found that the optimization of PRESS sequence for 0.3T MRS was as follows: low density of contrast agent ($0.1mmol/{\ell}$ and $0.3mmol/{\ell}$) made the highest signal intensity, while high density of contrast agent reveals the least reduction of signal intensity at 1700 ms. In conclusion, authors believe that it is helpful to reduce TR for acquiring maximum signal intensity.
Kim, Kilho;Choi, Sangwoo;Chae, Moon-jung;Park, Heewoong;Lee, Jaehong;Park, Jonghun
Journal of Intelligence and Information Systems
/
v.25
no.1
/
pp.163-177
/
2019
As smartphones are getting widely used, human activity recognition (HAR) tasks for recognizing personal activities of smartphone users with multimodal data have been actively studied recently. The research area is expanding from the recognition of the simple body movement of an individual user to the recognition of low-level behavior and high-level behavior. However, HAR tasks for recognizing interaction behavior with other people, such as whether the user is accompanying or communicating with someone else, have gotten less attention so far. And previous research for recognizing interaction behavior has usually depended on audio, Bluetooth, and Wi-Fi sensors, which are vulnerable to privacy issues and require much time to collect enough data. Whereas physical sensors including accelerometer, magnetic field and gyroscope sensors are less vulnerable to privacy issues and can collect a large amount of data within a short time. In this paper, a method for detecting accompanying status based on deep learning model by only using multimodal physical sensor data, such as an accelerometer, magnetic field and gyroscope, was proposed. The accompanying status was defined as a redefinition of a part of the user interaction behavior, including whether the user is accompanying with an acquaintance at a close distance and the user is actively communicating with the acquaintance. A framework based on convolutional neural networks (CNN) and long short-term memory (LSTM) recurrent networks for classifying accompanying and conversation was proposed. First, a data preprocessing method which consists of time synchronization of multimodal data from different physical sensors, data normalization and sequence data generation was introduced. We applied the nearest interpolation to synchronize the time of collected data from different sensors. Normalization was performed for each x, y, z axis value of the sensor data, and the sequence data was generated according to the sliding window method. Then, the sequence data became the input for CNN, where feature maps representing local dependencies of the original sequence are extracted. The CNN consisted of 3 convolutional layers and did not have a pooling layer to maintain the temporal information of the sequence data. Next, LSTM recurrent networks received the feature maps, learned long-term dependencies from them and extracted features. The LSTM recurrent networks consisted of two layers, each with 128 cells. Finally, the extracted features were used for classification by softmax classifier. The loss function of the model was cross entropy function and the weights of the model were randomly initialized on a normal distribution with an average of 0 and a standard deviation of 0.1. The model was trained using adaptive moment estimation (ADAM) optimization algorithm and the mini batch size was set to 128. We applied dropout to input values of the LSTM recurrent networks to prevent overfitting. The initial learning rate was set to 0.001, and it decreased exponentially by 0.99 at the end of each epoch training. An Android smartphone application was developed and released to collect data. We collected smartphone data for a total of 18 subjects. Using the data, the model classified accompanying and conversation by 98.74% and 98.83% accuracy each. Both the F1 score and accuracy of the model were higher than the F1 score and accuracy of the majority vote classifier, support vector machine, and deep recurrent neural network. In the future research, we will focus on more rigorous multimodal sensor data synchronization methods that minimize the time stamp differences. In addition, we will further study transfer learning method that enables transfer of trained models tailored to the training data to the evaluation data that follows a different distribution. It is expected that a model capable of exhibiting robust recognition performance against changes in data that is not considered in the model learning stage will be obtained.
Journal of the Korea Academia-Industrial cooperation Society
/
v.13
no.11
/
pp.5179-5186
/
2012
Miglitol, a well-known therapeutic intervention agents for diabetes, exhibits competitive inhibitory activity against ${\alpha}$-glucosidase and it is usually produced through three sequential steps including chemical and bioconversion processes. Gluconobactor oxydans (G. oxydans) belonging to acetic acid bacteria biologically, converts 1-deoxy-1-(2-hydroxyethylamino)-D-glucitol (P1) into a key intermidiate, 6-(2-hydroxyetyl) amino-6-deoxy-${\alpha}$-L-sorbofuranose (P2) by incomplete oxidation. In this study, we identified and optimized fermentation conditions of CK-2165, that was selected in soil samples by comparing the bioconversion yield. CK-2165 strain was found to be closely related to G. oxydans based on the result of phylogenetic analysis using 16S rDNA sequence. Utilization of API 20 kits revealed that this strain could use glucose, mannose, inositol, sorbitol, rhamnose, sucrose, melibiose, amygdalin and arabinose as carbon sources. The culture conditions were optimized for industrial production and several important factors affecting bioconversion rate were also tested using mycelial cake. Cell harvested at the late-stationary phase showed the highest bioconversion yield and $MgSO_4$ was critically required for the catalytic activity.
Dang, Hyun Shik;Jo, Dong Hee;Kim, Jong Seo;Jung, Taeho
Journal of the Korea Society for Simulation
/
v.26
no.4
/
pp.35-41
/
2017
With the advances in Internet over Things, the demand in diverse electronic devices such as mobile phones and sensors has been rapidly increasing and boosting up the researches on those products. Semiconductor materials, devices, and fabrication processes are becoming more diverse and complicated, which accompanies finding parameters for an optimal fabrication process. In order to find the parameters, a process simulation before fabrication or a real-time process control system during fabrication can be used, but they lack incorporating the feedback from post-fabrication data and compatibility with older equipment. In this research, we have developed an artificial intelligence based simulator, which finds parameters for an optimal process and controls process equipment. In order to apply the control concept to all the equipment in a fabrication sequence, we have developed a prototype for a manipulator which can be installed over an existing buttons and knobs in the equipment and controls the equipment communicating with the AI over the Internet. The AI is based on the deep learning to find process parameters that will produce a device having target electrical characteristics. The proposed simulator can control existing equipment via the Internet to fabricate devices with desired performance and, therefore, it will help engineers to develop new devices efficiently and effectively.
Purpose : A numerical method of designing a multiple quantum filter (MQF) is presented for the optimum detection of myo-inositol (mI), an important brain metabolite, by using in vivo proton nuclear magnetic resonance spectroscopy ($^1$-HMRS). Materials and Methods : Starting from the characterization of the metabolite, the filter design includes the optimization of the sequence parameters such as the two echo times (TEs), the mixing time (TM), and the flip angle and offset frequency of the 3rd $90^{\circ}$ pulse which converts multiple quantum coherences (MQCs) back into single quantum coherences (SQCs). The optimized filter was then tested both in phantom and in human brains. Results : The results demonstrate that the proposed MQF can improve the signal-to-background ratio of the target metabolite by a factor of more than three by effectively suppressing the signal from the background metabolites. Conclusion : By incorporating a numerical method into the design of MQFs in $^1$-HMRS the spectral integrity of a target metabolite, in particular, with a complicated spin system can be substantially enhanced.
Kim, Bo-Ra;Huyen, Trang Tran;Han, Na-Young;Park, Jong-Moon;Yu, Ung-Sik;Lee, Hoo-Keun
Analytical Science and Technology
/
v.24
no.6
/
pp.510-518
/
2011
Recent developments and improvements of multiple technological elements including mass spectrometry (MS) instrument, multi-dimensional chromatographic separation, and software tools processing MS data resulted in benefits of large scale proteomics analysis. However, its throughput is limited by the speed and reproducibility of the protein digestion process. In this study, we demonstrated a new method for rapid proteolytic digestion of proteins using acoustic technology. Tryptic digests of BSA prepared at various conditions by super acoustic for optimization time and intensity were analyzed by LC-MS/MS showed higher sequence coverage in compared with traditional 16 hrs digestion method. The method was applied successfully for complex proteins of a breast cancer cells at 30 min of digestion at intensity 2. This new application reduces time-consuming of sample preparation with better efficiency, even with large amount of proteins, and increases high-throughput process in sample preparation state.
KANG MIN-JUNG;YOON SANG-HWAL;LEE YOUNG-MI;LEE SOOK-HEE;KIM JU-EUN;JUNG KYUNG-HWA;SHIN YONG-CHUL;KIM SEON-WON
Journal of Microbiology and Biotechnology
/
v.15
no.4
/
pp.880-886
/
2005
Using carotenoid genes of Erwinia herbicola, metabolic engineering was carried out for lycopene production with the pAC-LYCO4 plasmid, which was composed of a chromosomal DNA fragment of E. herbicola containing the crtE, crtB, and crtI genes under the control of the tetracycline promoter and the ipi gene of Haematococcus pluvialis with the trc promoter. Plasmid pAC-LYCm4 was constructed for efficient expression of the four exogenous genes using a strong RBS sequence and the same tetracycline promoter. The optimized expression construct of pAC-LYCm4 increased Iycopene production three times as compared with pAC-LYCO4. pAC-LYCm5 containing ispA behind the four exogenous genes was constructed. There was no significant difference in Iycopene production and cell growth between pAC-LYCm4 and pAC-LYCm5. FPP synthase encoded by ispA was not rate-limiting for Iycopene production. Each gene of crtE, crtB, crtI, and ipi was overexpressed, using pBAD-crtE, pBAD-crtIB, and pBAD-ipiHPI, in addition to their expression from pAC-LYCm4. However, there was no increase oflycopene production with the additional overexpression of each exogenous gene. The four exogenous genes appeared to be not rate-limiting in cells harboring pAC-LYCm4. When pDdxs, pBAD24 containing dxs, was introduced into cells harboring lycopene synthetic plasmids, lycopene production of pAC-LYCO4, pAC-LYCm4, and pAC-LYCm5 was increased by 4.7-, 2.2-, and 2.2-fold, respectively. Lycopene production of pBAD-DXm4 containing crtE, crtB, crtI, ipi, and dxs was 5.2 mg/g dry cell weight with $0.2\%$ arabinose, which was 8.7-fold higher than that of the initial strain with pAC-LYC04. Therefore, the present study showed that proper regulation of a metabolically engineered pathway is important for Iycopene production.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.