DOI QR코드

DOI QR Code

Overproduction of Xanthophyll Pigment in Flavobacterium sp. JSWR-1 under Optimized Culture Conditions

  • Jegadeesh Raman (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Young-Joon Ko (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Jeong-Seon Kim (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Da-Hye Kim (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Soo-Jin Kim (Agricultural Microbiology Division, National Institute of Agricultural Sciences, Rural Development Administration)
  • Received : 2023.10.25
  • Accepted : 2023.11.16
  • Published : 2024.03.28

Abstract

Flavobacterium can synthesize xanthophyll, particularly the pigment zeaxanthin, which has significant economic value in nutrition and pharmaceuticals. Recently, the use of carotenoid biosynthesis by bacteria and yeast fermentation technology has shown to be very efficient and offers significant advantages in large-scale production, cost-effectiveness, and safety. In the present study, JSWR-1 strain capable of producing xanthophyll pigment was isolated from a freshwater reservoir in Wanju-gun, Republic of Korea. Based on the morphological, physiological, and molecular characteristics, JSWR-1 classified as belonging to the Flavobacterium species. The bacterium is strictly aerobic, Gram-negative, rod-shaped, and psychrophilic. The completed genome sequence of the strain Flavobacterium sp. JSWR-1 is predicted to be a single circular 3,425,829-bp chromosome with a G+C content of 35.2% and 2,941 protein-coding genes. The optimization of carotenoid production was achieved by small-scale cultivation, resulting in zeaxanthin being identified as the predominant carotenoid pigment. The enhancement of zeaxanthin biosynthesis by applying different light-irradiation, variations in pH and temperature, and adding carbon and nitrogen supplies to the growth medium. A significant increase in intracellular zeaxanthin concentrations was also recorded during fed-batch fermentation achieving a maximum of 16.69 ± 0.71 mg/l, corresponding to a product yield of 4.05 ± 0.15 mg zeaxanthin per gram cell dry weight. Batch and fed-batch culture extracts exhibit significant antioxidant activity. The results demonstrated that the JSWR-1 strain can potentially serve as a source for zeaxanthin biosynthesis.

Keywords

Acknowledgement

This work was carried out with the support of "Cooperative Research Program for Agriculture Science and Technology Development (Project No. RS-2020-RD009897)" Rural Development Administration, Republic of Korea. The first author is grateful to the Agricultural Microbiology Division, Rural Development Administration, Republic of Korea, for the postdoctoral fellowship.

References

  1. Barreiro C, Barredo JL. 2018. Carotenoids Production: A Healthy and Profitable Industry. pp. 7-22. In Microbial Carotenoids; Barreiro C, Barredo JL, Eds.; Humana Press: New York, NY, USA. 
  2. Giani M, Martinez-Espinosa RM. 2020. Carotenoids as a protection mechanism against oxidative stress in Haloferax mediterranei. Antioxidants 9: 1060. 
  3. Chew B, Oark J, Wong M, Wong T. 1998. A comparison of the anticancer activities of dietary beta-carotene, canthaxanthin and astaxanthin in mice in vivo. Anticancer Res. 19: 1849-1853. 
  4. Ramesh C, Vinithkumar NV, Kirubagaran R, Venil CK, Dufosse L. 2019. Multifaceted applications of microbial pigments: current knowledge, challenges and future directions for public health implications. Microorganisms 7: 186. 
  5. Panesar R, Kaur S, Panesar PS. 2015. Production of microbial pigments utilizing agro-industrial waste: a review. Curr. Opin. Food Sci. 1: 70-76. 
  6. Yada S, Wang Y, Zou Y, Nagasaki K, Hosokawa K, Osaka I, et al. 2007. Isolation and characterization of two groups of novel marine bacteria producing violacein. Mar. Biotechnol. 10: 128-132. 
  7. Nishizaki T, Tsuge K, Itaya M, Doi N, Yanagawa H. 2007. Metabolic engineering of carotenoid biosynthesis in Escherichia coli by ordered gene assembly in Bacillus subtilis. Appl. Environ. Microbiol. 73: 1355-1361. 
  8. Rezaeeyan Z, Safarpour A, Amoozegar MA, Babavalian H, Tebyanian H, Shakeri F. 2017. High carotenoid production by halotolerant bacterium, Kocuria sp. strain QWT-12 and anticancer activity of its carotenoid. EXXLI J. 16: 840-851. 
  9. Yabuzaki J. 2017. Carotenoids Database: structures, chemical fingerprints and distribution among organisms. Database 2017: bax004. 
  10. Das A, Yoon SH, Lee SH, Kim JY, Oh DK, Kim SW. 2007. An update on microbial carotenoid production: application of recent metabolic engineering tools. Appl. Microbiol. Biotechnol. 77: 505-512. 
  11. Li C, Swofford CA, Sinskey AJ. 2019. Modular engineering for microbial production of carotenoids. Metab. Eng. Commun. 10: e00118. 
  12. Heider SAE, Peters-Wendisch P, Wendisch VF. 2012. Carotenoid biosynthesis and overproduction in Corynebacterium glutamicum. BMC Microbiol. 12: 198. 
  13. Netzer R, Stafsnes MH, Andreassen T, Goksoyr A, Bruheim P, Brautaset T. 2010. Biosynthetic pathway for gamma-cyclic sarcinaxanthin in Micrococcus luteus: heterologous expression and evidence for diverse and multiple catalytic functions of C(50) carotenoid cyclases. J. Bacteriol. 192: 5688-5699. 
  14. Zuo ZQ, Xue Q, Zhou J, Zhao DH, Han J, Xiang H. 2018. Engineering Haloferax mediterranei as an efficient platform for high level production of lycopene. Front. Microbiol. 9: 2893. 
  15. Dieser M, Greenwood M, Foreman C. 2010. Carotenoid pigmentation in Antarctic heterotrophic bacteria as a strategy to withstand environmental stresses. Arct. Antarct. Alp. Res. 42: 396-405. 
  16. Siziya IN, Yoon DJ, Kim M, Seo MJ. 2022. Enhanced production of C30 Carotenoid 4,4'-diaponeurosporene by optimizing culture conditions of Lactiplantibacillus plantarum subsp. plantarum KCCP11226T. J. Microbiol. Biotechnol. 32: 892-901. 
  17. Ram S, Mitra M, Shah F, Tirkey SR, Mishra S. Bacteria as an alternative biofactory for carotenoid production: a review of its application, opportunities and challenges. J. funct. Foods 67: 103867. 
  18. Saejung C, Apaiwong P. 2015. Enhancement of carotenoid production in the new carotenoid-producing photosynthetic bacterium Rhodopseudomonas faecalis PA2. Biotechnol. Bioproc. E. 20: 701-707. 
  19. Sajilata MG, Singhal RS, Kamat MY. 2008. The carotenoid pigment zeaxanthin - a review. Compr. Rev. Food Sci. Food Saf. 7: 29-49. 
  20. Pradel P, Calisto N, Navarro L, Barriga A, Vera N, Aranda C, et al. 2021. Carotenoid cocktail produced by an Antarctic soil Flavobacterium with biotechnological potential. Microorganisms 9: 2419. 
  21. Nabi F, Arain MA, Rajput N, Alagawany M, Soomro J, Umer M, et al. 2020. Health benefits of carotenoids and potential application in poultry industry: a review. J. Anim. Physiol. Anim. Nutr. 104: 1809-1818. 
  22. Olmedilla B, Granado F, Blanco I, Vaquero M, Cajigal C. 2001. Lutein in patients with cataracts and age-related macular degeneration: a longterm supplementation study. J. Sci. Food Agr. 81: 904-909. 
  23. Hundle BS, OBrien DA, Alberti M, Beyer P, Hearst JE. 1992. Functional expression of zeaxanthin glucosyltransferase from Erwinia herbicola and a proposed uridine diphosphate binding site. Proc. Natl. Acad. Sci. USA 89: 9321-9325. 
  24. Lagarde D, Beuf L, Vermaas W. 2000. Increased production of zeaxanthin and other pigments by application of genetic engineering techniques to Synechocystis sp. strain PCC 6803. Appl. Environ. Microbiol. 66: 64-72.
  25. Bhosale P, Bernstein PS. 2005. Microbial xanthophylls. Appl. Microbiol. Biotechnol. 68: 445-455. 
  26. Masetto A, Flores-Cotera LB, Diaz C, Langley E, Sanchez S. 2001. Application of a complete factorial design for the production of zeaxanthin by Flavobacterium sp. J. Biosci. Bioeng. 92: 55-8. 
  27. Joshi C, Singhal RS. 2018. Zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 in a lab-scale bubble column reactor: artificial intelligence modelling for determination of optimal operational parameters and energy requirements. Korean J. Chem. Eng. 35: 195-203. 
  28. Xie Y, Xiong X, Chen S. 2021. Challenges and potential in increasing lutein content in microalgae. Microorganisms 9: 1068. 
  29. Reichenbach H, 1989 Order 1. Cytophagales Leadbetter C. 1974. pp. 2011-2013. In Staley JT, Bryant MP, Pfennig N, Holt JG (eds.), Bergey's Manual of Systematic Bacteriology, Williams & Wilkins, Baltimore. 
  30. McCammon SA, Bowman JP. 2000. Taxonomy of Antarctic Flavobacterium species: description of Flavobacterium gillisiae sp. nov., Flavobacterium tegetincola sp. nov., and Flavobacterium xanthum sp. nov., nom. rev. and reclassification of [Flavobacterium] salegens as Salegentibacter salegens gen. nov., comb. nov. Int. J. Syst. Evol. Microbiol. 3: 1055-1063. 
  31. Fu Y, Tang X, Lai Q, Zhang C, Zhong H, Li W, et al. 2011. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 61: 205-209. 
  32. Kralova S, Busse HJ, Bezdicek M, Sandoval-Powers M, Nykrynova M, Stankova E, et al. 2021. Flavobacterium flabelliforme sp. nov. and Flavobacterium geliluteum sp. nov., two multidrug-resistant psychrotrophic species isolated from Antarctica. Front. Microbiol. 12: 729977. 
  33. Sun H, Zheng H, Wang X, Jiang Y, Liao B, Li A, Xiao B. 2022. Flavobacterium coralii sp. nov., a marine bacterium isolated from coral culture seawater. Int. J. Syst. Evol. Microbiol. 72. doi: 10.1099/ijsem.0.005201. 
  34. Gierhart DL. 1995. Zeaxanthin-containing compositions produced by Flavobacterium multivorum. U.S. patient 542778. 
  35. Yoon SH, Ha SM, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introduction EzBioCloud:a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613-1617. 
  36. Elbing K, Brent R. 2002. Media preparation and bacteriological tools. Curr. Protoc. Mol. Biol. Aug.; Chapter 1: Unit 1.1. 
  37. Martins OS, Glehn HC, Branco MBC, Toledo RM, Rocha MK. 2009. Estimativa da densidade de biomassa potencial com uso de SIG no Estado de Sao Paulo. Cadernos da Mata Ciliar, 1st edn, Eduarte. Secretaria do Meio Ambiente, Sao Paulo. 
  38. Asker D, Awad TS, Beppu T, Ueda K. 2018. Screening and profiling of natural ketocarotenoids from environmental aquatic bacterial isolates. Food Chem. 253: 247-254. 
  39. Zhao Y, Guo L, Xia Y, Zhuang X, Chu W. 2019. Isolation, identification of carotenoid-producing Rhodotorula sp. from marine environment and optimization for carotenoid production. Mar. Drugs 17: 161. 
  40. Liu H, Zhang C, Zhang X, Tan K, Zhang H, Cheng D, et al. 2020. A novel carotenoids-producing marine bacterium from noble scallop Chlamys nobilis and antioxidant activities of its carotenoid compositions. Food Chem. 320: 126629. 
  41. Britton G. TLC of carotenoids. 2008. In: Waksmundzka-Hajnos M, Sherma J, Kowalska T (eds). Thin Layer Chromatography in Phytochemistry. Boca Raton: CRC Press, 564-95. 
  42. Chekanov K, Lobakova E, Selyakh I, Semenova L, Sidorov R, Solovchenko A. 2014. Accumulation of astaxanthin by a new Haematococcus pluvialis strain BM1 from the white sea coastal rocks (Russia). Mar. Drugs 12: 4504-4520. 
  43. Xiao F, Xu T, Lu B, Liu R. 2020. Guidelines for antioxidant assays for food components. Food Front. 1: 60-69. 
  44. Chin CS, Alexander D, Marks P. Klammer AA, Drake J, Heiner C, Clum A, et al. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10: 563-569. 
  45. BCC. 2022. The Global Market for carotenoids. Available from https://www.bccresearch.com/market-research/food-and-beverage/the-global-market-for-carotenoids.html. 
  46. Vila E, Hornero-Mendez D, Lareo C, Saravia V. 2020. Biotechnological production of zeaxanthin by an Antarctic Flavobacterium: evaluation of culture conditions. J. Biotechnol. 319: 54-60. 
  47. Liu Q, Liu HC, Yang LL, Xin YH. 2021. Flavobacterium franklandianum sp. nov. and Flavobacterium gawalongense sp. nov., isolated from glaciers on the Tibetan Plateau. Int. J. Syst. Evol. Microbiol. 71. doi: 10.1099/ijsem.0.004868. 
  48. Jo H, Park MS, Lim Y, Kang I, Cho JC. 2023. Ten novel species belonging to the genus Flavobacterium, isolated from freshwater environments: F. praedii sp. nov., F. marginilacus sp. nov., F. aestivum sp. nov., F. flavigenum sp. nov., F. luteolum sp. nov., F. gelatinilyticum sp. nov., F. aquiphilum sp. nov., F. limnophilum sp. nov., F. lacustre sp. nov., and F. eburneipallidum sp. nov. J. Microbiol. 61: 495-510. 
  49. Saticioglu IB. 2021. Flavobacterium erciyesense sp. nov., a putative non-pathogenic fish symbiont. Arch. Microbiol. 203: 5783-5792. 
  50. Zhang Y, Liu Z, Sun J, Xue C, Mao X. 2018. Biotechnological production of zeaxanthin by microorganisms. Trends Food Sci. Technol. 71: 225-234. 
  51. Asker D, Awad TS, Beppu T, Ueda K. 2012. Novel zeaxanthin-producing bacteria isolated from radioactive hot spring water. Methods Mol. Biol. 892: 99-131. 
  52. Hameed A, Shahina M, Lin SY, Sridhar KR, Young LS, Lee MR, et al. 2012. Siansivirga zeaxanthinifaciens gen. nov., sp. nov., a novel zeaxanthin-producing member of the family Flavobacteriaceae isolated from coastal seawater of Taiwan. FEMS Microbiol. Lett. 333: 37-45. 
  53. Barauna RA, Freitas DY, Pinheiro JC, Folador AR, Silva A. 2017. A Proteomic perspective on the bacterial adaptation to cold: integrating OMICs data of the psychrotrophic bacterium Exiguobacterium antarcticum B7. Proteomes 5: 9. 
  54. Reis-Mansur MCPP, Cardoso-Rurr JS, Silva JVMA et al. 2019. Carotenoids from UV-resistant Antarctic Microbacterium sp. LEMMJ01. Sci. Rep. 9: 9554. 
  55. Jagannadham M, Chattopadhyay M, Subbalakshmi C, Vairamani M, Narayanan K, Rao CM, et al. 2000. Carotenoids of an Antarctic psychrotolerant bacterium, Sphingobacterium antarcticus, and a mesophilic bacterium, Sphingobacterium multivorum. Arch. Microbiol. 173: 418-424. 
  56. Subczynski WK, Markowska E, Gruszecki WI, Sielewiesiuk J. 1992. Effect of polar carotenoids on dimyristoylphosphatidylcholine membranes: a spin-label study. Biochim. Biophys. Acta 1105: 97-108. 
  57. Bhosale P, Larson AJ, Bernstein PS. 2004. Factorial analysis of tricarboxylic acid cycle intermediates for optimization of zeaxanthin production from Flavobacterium multivorum. J. Appl. Microbiol. 96: 623-629. 
  58. Jinendiran S, Dileep Kumar BS, Dahms HU, Arulanandam CD, Sivakumar N. 2019. Optimization of submerged fermentation process for improved production of β-carotene by Exiguobacterium acetylicum S01. Heliyon 5: e01730. 
  59. Alcantara S, Sanchez S. 1999. Influence of carbon and nitrogen sources on Flavobacterium growth and zeaxanthin biosynthesis. J. Ind. Microbiol. Biotechnol. 23: 697-700. 
  60. Nelis HJ, De Leenheer AP. 1989. Profiling and quantitation of bacterial carotenoids by liquid chromatography and photodiode array detection. Appl. Environ. Microbiol. 55: 3065-3071. 
  61. Mata-Gomez LC, Montanez JC, Mendez-Zavala A, Aguilar CN. 2014. Biotechnological production of carotenoids by yeasts: an overview. Microb. Cell Fact. 13: 12. 
  62. Sowmya R, Sachindra N. 2015. Carotenoid production by Formosa sp. KMW, a marine bacteria of Flavobacteriaceae family: influence of culture conditions and nutrient composition. Biocatal. Agric. Biotechnol. 4: 559-567. 
  63. Rehman N, Dixit PP. 2020. Influence of light wavelengths, light intensity, temperature, and pH on biosynthesis of extracellular and intracellular pigment and biomass of Pseudomonasaeruginosa NR1. J. King Saud. Univ. Sci. 32: 745-752. 
  64. Sharma N, Fleurent G, Awwad F, Cheng M, Meddeb-Mouelhi F, Budge SM, et al. 2020. Red light variation an effective alternative to regulate biomass and lipid profiles in Phaeodactylum tricornutum. Appl. Sci. 10: 2531. 
  65. Takano H, Obitsu S, Beppu T, Ueda K. 2005. Light-induced carotenogenesis in Streptomyces coelicolor A3(2): identification of an extracytoplasmic function sigma factor that directs photodependent transcription of the carotenoid biosynthesis gene cluster. J. Bacteriol. 187: 1825-1832. 
  66. Armstrong GA, Alberti M, Leach F, Hearst JE. 1989. Nucleotide sequence, organization, and nature of the protein products of the carotenoid biosynthesis gene cluster of Rhodobacter capsulatus. Mol. Gen. Genet. 216: 254-268. 
  67. Liu G, Cai S, Hou J, Zhao D, Han J, Zhou J, et al. 2016. Enoyl-CoA hydratase mediates polyhydroxyalkanoate mobilization in Haloferax mediterranei. Sci. Rep. 6: 2401. 
  68. Gierhart DL. 1994. Production of zeaxanthin and zeaxanthin-containing compositions. 5308759A. US Patent,1994 May 3, Applied Food Biotechnology, Inc. 
  69. Lopez J, Cataldo VF, Pena M, Saa PA, Saitua F, Ibaceta M, Agosin E. 2019. Built your bioprocess on a solid strain β-carotene production in recombinant Saccharomyces cerevisiae. Front. Bioeng. Biotechnol. 7: 171. 
  70. Zeni J, Colet R, Cence K, Tiggemann L, Toniazzo G, Cansian RL, et al. 2011. Screening of microorganisms for production of carotenoids. CyTA-J. Food 9: 160-166. 
  71. Shepherd D, Dasek J, Suzanne M, Carels C. 1976. Assignee Societe D' Assistance Technique pour Produits Nestle S.A. (Lausanne, CH), date of issue April 20, 1976. Production of zeaxanthin. U.S. patent 3951743. 
  72. Hameed A, Arun Ab, Ho HP, Chang CM, Rekha PD, Lee MR, et al. 2011. Supercritical carbon dioxide micronization of zeaxanthin from moderately thermophilic bacteria Muricauda lutaonensis CC-HSB-11T. J. Agric. Food Chem. 59: 4119-4124. 
  73. Beuttler H, Hoffmann J, Jeske M, Hauer B, Schmid RD, Altenbuchner J, et al. 2011. Biosynthesis of zeaxanthin in recombinant Pseudomonas putida. Appl. Microbiol. Biotechnol. 89: 1137-1147. 
  74. Joshi C, Singhal RS. 2016. Modelling and optimization of zeaxanthin production by Paracoccus zeaxanthinifaciens ATCC 21588 using hybrid genetic algorithm techniques. Biocatal. Agric. Biotechnol. 8: 228-235. 
  75. Xie Y, Chen S, Xiong X. 2021. Metabolic engineering of non-carotenoid-production yeast Yarrowia lipolytica for the biosynthesis of zeaxanthin. Front. Microbiol. 12: 699235. 
  76. Jeong SW, Yang JE, Choi YJ. 2022. Isolation and characterization of a yellow xanthophyll pigment-producing marine bacterium, Erythrobacter sp. SDW2 strain, in coastal seawater. Mar. Drugs 20: 73. 
  77. Turcsi E, Nagy V, Deli J. 2016. Study on the elution order of carotenoids on endcapped C18 and C30 reverse silica stationary phase. A review of the database J. Food Comp. Anal. 47: 101-112. 
  78. Sheu SY, SU CL, Kwon SW, Chen WM. 2017. Flavobacterium amniphilum sp. nov., isolated from a stream. Int. J. syst. Evol. Microbiol. 67: 5179-5186. 
  79. Chaudhary DK, Kim J. 2017. Flavobacterium olei sp. nov., a novel psychrotolerant bacterium isolated from oil-contaminated soil. Int. J. Syst. Evol. Microbiol. 67: 2211-2218. 
  80. Kim YJ, Kim SR, Nguyen NL, Yang DC. 2013. Flavobacterium ginsengisoli sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 63: 4289-4293. 
  81. Fu Y, Tang X, Lai Q, Zhang C, Zhong H, Li W, et al. 2011. Flavobacterium beibuense sp. nov., isolated from marine sediment. Int. J. Syst. Evol. Microbiol. 61: 205-209. 
  82. Kralova S. 2017. Role of fatty acids in cold adaptation of Antarctic psychrophilic Flavobacterium spp. Syst. Appl. Microbiol. 40: 329-333. 
  83. Padhan B, Poddar K, Sarkar D, Sarkar A. 2021. Production, purification, and process optimization of intracellular pigment from novel psychrotolerant Paenibacillus sp. BPW19. Biotechnol. Rep. (Amst). 29: e00592. 
  84. Shindo K, Kikuta K, Suzuki A, Katsuta A, Kasai H, Yasumoto-Hirose M, Matsuo Y, Misawa N, Takaichi S. 2007. Rare carotenoids, (3R)-saproxanthin and (3R,2'S)-myxol, isolated from novel marine bacteria (Flavobacteriaceae) and their antioxidative activities. Appl. Microbiol. Biotechnol. 74: 1350-1357. 
  85. Metwally RA, El-Sersy NA, El Sikaily, Sabry SA, Ghozlan HA. 2022. Optimization and multiple in vitro activity potentials of carotenoids from marine Kocuria sp. RAM1. Sci. Rep. 12: 18203.