Browse > Article
http://dx.doi.org/10.5806/AST.2011.24.6.510

Acoustic technology-assisted rapid proteolysis for high-throughput proteome analysis  

Kim, Bo-Ra (Lee Gil Ya Cancer and Diabetes Institute, Gachon University)
Huyen, Trang Tran (Lee Gil Ya Cancer and Diabetes Institute, Gachon University)
Han, Na-Young (Lee Gil Ya Cancer and Diabetes Institute, Gachon University)
Park, Jong-Moon (Lee Gil Ya Cancer and Diabetes Institute, Gachon University)
Yu, Ung-Sik (Lee Gil Ya Cancer and Diabetes Institute, Gachon University)
Lee, Hoo-Keun (Lee Gil Ya Cancer and Diabetes Institute, Gachon University)
Publication Information
Analytical Science and Technology / v.24, no.6, 2011 , pp. 510-518 More about this Journal
Abstract
Recent developments and improvements of multiple technological elements including mass spectrometry (MS) instrument, multi-dimensional chromatographic separation, and software tools processing MS data resulted in benefits of large scale proteomics analysis. However, its throughput is limited by the speed and reproducibility of the protein digestion process. In this study, we demonstrated a new method for rapid proteolytic digestion of proteins using acoustic technology. Tryptic digests of BSA prepared at various conditions by super acoustic for optimization time and intensity were analyzed by LC-MS/MS showed higher sequence coverage in compared with traditional 16 hrs digestion method. The method was applied successfully for complex proteins of a breast cancer cells at 30 min of digestion at intensity 2. This new application reduces time-consuming of sample preparation with better efficiency, even with large amount of proteins, and increases high-throughput process in sample preparation state.
Keywords
LC/MS/MS; protein digestion; acoustic technology;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Sun, S. Gao, L. Wang, Y. Chen, S. Wu, X. Wang, D. Zheng and Y. Gao, Mol. Cel. Proteomics, 5, 769-776 (2006).   DOI   ScienceOn
2 G. Yao, C. Deng, X. Zhang and P. Yang, Angew. Chem. Int. Ed, 49, 8185 (2010).   DOI   ScienceOn
3 B. E. Slentz, N. A. Penner and F. E. Regnier, J. Chromatogr. A, 984(1), 97-107 (2003).   DOI   ScienceOn
4 E. Bonneil, M. Mercier and K. C. Waldron, Anal. Chim. Acta, 404, 29-45 (2000).   DOI   ScienceOn
5 L. J. Jin, J. Ferrance, J. C. Sanders and J. P. Landers, Lab. Chip, 3, 11-18 (2003).   DOI   ScienceOn
6 K. Yamada, T. Nakasone, R. Nagano and M. Hirata, J. Appl. Polym. Sci., 89, 3574-3581 (2003).   DOI   ScienceOn
7 K. Sakai-Kato, M. Kato and T. Toyo'oka, Anal. Chem., 74, 2943 (2002).   DOI   ScienceOn
8 J. Gao, J. Xu, L. E. Locascio and C.S. Lee, Anal. Chem., 73, 2648-2655 (2001).   DOI   ScienceOn
9 D. S. Peterson, T. Rohr, F.Svec and J. M. J. Frechet, Anal. Chem., 74, 4081-4088 (2002).   DOI   ScienceOn
10 G. W. Slysz and D. C. Schriemer, Rapid Commun Mass Spectrom., 17, 1044-1050 (2003).   DOI   ScienceOn
11 http://www.covarisinc.com/how_it_works.html
12 A.-J. Moulay A. and Y. J. Xu, J. Zhejiang Univ. Science B, 7(6), 411 (2006).   DOI   ScienceOn
13 R. Aebersold and D. R. Goodlett, Chem. Rev., 101, 269- 295 (2001).   DOI   ScienceOn
14 R. Aebersold and M. Mann, Nature, 422, 198-207 (2003).   DOI   ScienceOn
15 T. J Griffin, D. R. Goodlett, R. Aebersold and C. Opin, Biotech., 12, 607-612 (2001).   DOI
16 J. M. Gilmore and M. P. Washburn, J. Proteomics, 73(11), 2078-2091 (2010).   DOI   ScienceOn
17 J. A. Loo, C.G. Edmonds and R. D. Smith, Anal. Chem., 63, 2488-2499 (1991).   DOI   ScienceOn
18 J. R. III Yates, J. Mass Spectrometry, 33, 1-19 (1998).   DOI   ScienceOn
19 J. P. Chang, D. E. Kiehl and A. Kennington, Rapid Commun. Mass Spectrom., 11, 1266-1270 (1997).   DOI   ScienceOn
20 G. W. Slysz and D. C. Schriemer, Anal. Chem., 77(6), 1572-1579 (2005).   DOI   ScienceOn
21 I. M. Lazar, R. S. Ramsey and J. M. Ramsey, Anal. Chem., 73(8), 1733-1739 (2001).   DOI   ScienceOn