As current postal automation is limited to dispatch and arrival sorting, delivery sequence sorting is performed manually by each postman. It not only acts as a bottleneck process in the overall mailing process but is expensive operation. To cope with this problem effectively, delivery sequence sorting automation is required. The important components of delivery sequence sorting automation system are sequence sorter and Hangul OCR which function is to extract the address of delivery point. DSI database will be interfaced to both Hangul OCR and sequence sorter for finding the accurate delivery sequence number and stacker number. The objectives of this research are to develop DSI(Delivery Sequence Information) database prototype and client application for managing information effectively. For database requirements collection and analysis, we draw all possible sorting plans, and apply the AHP(Analytic Hierarchy Process) method to determine the optimal one. And then, we design DSI database schema based on the optimal one and implement it using Oracle RDBMS. In addition, as address information in DIS database consist of hierarchical structure which has its correspondence sequence number, so it is important to reorganize sequence information accurately when address information is inserted, deleted or updated. To increase delivery accuracy, we reflect this point in writing application.
Cho Kyung Hwan;Jung Kwang Su;Kim Sun Shin;Ryu Keun Ho
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2005년도 Proceedings of ISRS 2005
/
pp.770-773
/
2005
In most biological laboratory, sequences from sequence machine are stored into file disks as simple files. It will be hard work to store and manage the sequence data with consistency and integrity such as storing redundant files. It is required needed to develop a system which integrated and managed genome data with consistency and integrity for accurate sequence analysis. There fore, in this paper, we not only store gene and protein sequence data through sequencing but also manage them. We also make a integrate schema for transforming the file formats and design database system using it. As integrated schema is designed as a BSML, it is possible to apply a style language of XSL. From this, we can transfer among heterogeneous sequence formats.
In the proteomics research using mass spectrometry, the protein database search gives the protein information from the peptide sequences that show the best match with the tandem mass spectra. The protein sequence database has been a powerful knowledgebase for this protein identification. However, as we accumulate the protein sequence information in the database, the database size gets to be huge. Now it becomes hard to consider all the protein sequences in the database search because it consumes much computing time. For the high-throughput analysis of the proteome, usually we have used the non-redundant refined database such as IPI human database of European Bioinformatics Institute. While the non-redundant database can supply the search result in high speed, it misses the variation of the protein sequences. In this study, we have concerned the proteomics data in the point of protein similarities and used the network analysis tool to build a new analysis method. This method will be able to save the computing time for the database search and keep the sequence variation to catch the modified peptides.
Cha Hyo Soung;Jung Kwang Su;Jung Young Jin;Ryu Keun Ho
대한원격탐사학회:학술대회논문집
/
대한원격탐사학회 2004년도 Proceedings of ISRS 2004
/
pp.99-102
/
2004
Recently according to developing of bioinformatics techniques, there are a lot of researches about large amount of biological data. And a variety of files and databases are being used to manage these data efficiently. However, because of the deficiency of standardization there are a lot of problems to manage the data and transform one into the other among heterogeneous formats. We are interested in integrating. saving, and managing gene and protein sequence data generated through sequencing. Accordingly, in this paper the goal of our research is to implement the system to manage sequence data and transform a sequence file format into other format. To satisfy these requirements, we adopt BSML (Bioinformatics Sequence Markup Language) as the standard to manage the bioinformatics data. And then we integrate and store the heterogeneous 리at file formats using BSML schema based DTD. And we developed the system to apply the characteristics of object-oriented database and to process XPath query, one of the efficient structural query. that saves and manages XML documents easily.
대한원격탐사학회 2006년도 Proceedings of ISRS 2006 PORSEC Volume II
/
pp.627-630
/
2006
Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.
Sequential Pattern Mining is the mining approach which addresses the problem of discovering the existent maximal frequent sequences in a given databases. In the daily and scientific life, sequential data are available and used everywhere based on their representative forms as text, weather data, satellite data streams, business transactions, telecommunications records, experimental runs, DNA sequences, histories of medical records, etc. Discovering sequential patterns can assist user or scientist on predicting coming activities, interpreting recurring phenomena or extracting similarities. For the sake of that purpose, the core of sequential pattern mining is finding the frequent sequence which is contained frequently in all data sequences. Beside the discovery of frequent itemsets, sequential pattern mining requires the arrangement of those itemsets in sequences and the discovery of which of those are frequent. So before mining sequences, the main task is checking if one sequence is a subsequence of another sequence in the database. In this paper, we implement the subsequence matching method as the preprocessing step for sequential pattern mining. Matched sequences in our implementation are the normalized sequences as the form of number chain. The result which is given by this method is the review of matching information between input mapped sequences.
Pattern finding is one of the important tasks in a protein or DNA sequence analysis. Alignment is the widely used technique for finding patterns in sequence analysis. BLAST (Basic Local Alignment Search Tool) is one of the most popularly used tools in bio-informatics to explore available DNA or protein sequence databases. BLAST may generate a huge output for a large sequence data that contains various sequence patterns. However, BLAST does not provide a tool to summarize and analyze the patterns or matched alignments in the BLAST output file. BLAST lacks of general and robust parsing tools to extract the essential information out from its output. This paper presents a pattern summary system which is a powerful and comprehensive tool for discovering pattern structures in huge amount of sequence data in the BLAST. The pattern summary system can identify clusters of patterns, extract the cluster pattern sequences from the subject database of BLAST, and display the clusters graphically to show the distribution of clusters in the subject database.
We have built a database server called Patome which contains the annotation information for patented bio-sequences from the Korean Intellectual Property Office (KIPO). The aims of the Patome are to annotate Korean patent bio-sequences and to provide information on patent relationship of public database entries. The patent sequences were annotated with Reference Sequence (RefSeq) or NCBI's nr database. The raw patent data and the annotated data were stored in the database. Annotation information can be used to determine whether a particular RefSeq ID or NCBI's nr ID is related to Korean patent. Patome infrastructure consists of three componentsthe database itself, a sequence data loader, and an online database query interface. The database can be queried using submission number, organism, title, applicant name, or accession number. Patome can be accessed at http://www.patome.net. The information will be updated every two months.
대부분의 생물정보학의 프로그램들은 데이타베이스로부터 유전자 등의 데이타를 검색하고 처리하여 생화학자와 생물학자에게 서비스를 제공한다. 이때 각각 클라이언트의 요청마다 데이타베이스의 검색을 수행한다면 많은 디스크 접근 시간이 소요된다. 또한 서버에 과부하를 초래하여 응답시간이 길어질 수 있다. 본 논문에서는 생물정보학에서 서열 검색 프로그램의 데이타베이스 사용 패턴을 이용하여 많은 데이타베이스 요청에 대하여 데이타베이스의 검색을 위한 디스크 접근을 공유하는 그룹핑 기법을 제안한다. 또한, 사용자 요청을 대기 시간 없이 처리중인 작업과 동시에 데이타베이스의 검색을 위한 디스크 접근을 공유하여 시스템 처리율을 높이고 빠른 응답시간을 가지는 카플 방식을 제안한다. 제안된 기법은 수학적 분석과 시뮬레이션을 통하여 성능을 검증하였다.
시공단계에 따른 철근콘크리트 구조물의 장기변형 해석은 설계 및 시공에 있어서 매우 중요한 요소이다. 하지만 기존의 많은 해석적 연구들은 그 적용기법의 단순화로 인하여 실제 구조설계 및 시공에 대부분 반영되지 못하고 있다. 동바리와 기둥에서는 축력 재분배가 시간에 따라 계속적으로 변화되기 때문에 콘크리트 타설, 거푸집 제거, 동바리 재설치, 동바리 제거 및 이에 따른 추가하중의 작용과 같은 전반적인 시공단계를 그대로 적용하여 해석하는 것은 매우 중요한 요소이다. 따라서 본 논문에서는 이와 같은 시간에 따른 시공단계별 해석을 객체지향 알고리즘으로 개발하였다. 본 시스템에서는 입력모듈, DB 모듈, DB저장 모듈, 해석모듈 및 결과분석모듈로 구분하였으며, 각 모듈간의 연계는 visual c# 루틴으로 처리하였다. 또한 그래픽 인터페이스와 DB 테이블은 사용자 편의성을 고려하여 개발하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.