• Title/Summary/Keyword: Sequence Characterized Amplified Region (SCAR)

Search Result 46, Processing Time 0.024 seconds

Development of strain-specific SCAR marker for selection of Pleurotus eryngii strains with higher β-glucan (베타글루칸 함량이 높은 큰느타리버섯 선발을 위한 SCAR marker 개발)

  • Kim, Su Cheol;Kim, Hye Soo;Cho, Yong Un;Ryu, Jae-San;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.79-83
    • /
    • 2015
  • In this study, SCAR marker that differentiates Pleurotus eryngii strains with higher ${\beta}$-glucan from control strain was developed. Genomic DNAs of 9 control strains of Pleurotus eryngii and 9 Pleurotus eryngii strains with higher ${\beta}$-glucan were analyzed by bulked segregant analysis (BSA) using randomly amplified polymorphic DNA (RAPD). One-hundred twenty RAPD primers were screened on bulked DNA samples and a unique DNA fragment with the size of 91 bp was yielded by OP-R03 primer from the Pleurotus eryngii strains with higher ${\beta}$-glucan. A sequence characterized amplified region (SCAR) marker, designated as OP-R03-1-F and OP-R03-1-R, was designed on the basis of the determined sequence. The PCR analysis with the OP-R03-1 primer showed that this SCAR marker can clearly distinguish the Pleurotus eryngii strains with higher ${\beta}$-glucan from the control strains.

Development of strain-specific SCAR marker for selection of Pleurotus eryngii strains adaptable to high-temperature (큰느타리버섯의 고온적응성 형질에 관련된 SCAR Marker 개발)

  • Kim, Su Cheol;Kim, Hye Soo;Park, So Yeon;Ryu, Jae-San;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.226-231
    • /
    • 2014
  • In this study, SCAR marker that differentiates Pleurotus eryngii strains adaptable to high-temperature from control strain was developed. Genomic DNAs of 7 control strains of Pleurotus eryngii and 7 Pleurotus eryngii strains adaptable to high-temperature were analyzed by bulked segregant analysis (BSA) using randomly amplified polymorphic DNA (RAPD). Onehundred twenty RAPD primers were screened on bulked DNA samples and a unique DNA fragment with the size of 385 bp was yielded by OP-A06 primer from the Pleurotus eryngii strains adaptable to high-temperature. A sequence characterized amplified region (SCAR) marker, designated as OP-A06-1-F and OP-A06-1-R, was designed on the basis of the determined sequence. The PCR analysis with the OP-A06-1 primer showed that this SCAR marker can clearly distinguish the Pleurotus eryngii strains adaptable to high-temperature from the control strains.

Development of a psychrophilic-SCAR marker for Pleurotus eryngii (큰느타리버섯의 저온적응성 형질에 관련된 SCAR Marker 개발)

  • Kim, Su Chul;Hwang, Hye Sung;Cho, Yun Jun;Kim, Hye Su;Ryu, Jae-San;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.11 no.3
    • /
    • pp.171-176
    • /
    • 2013
  • Genomic DNAs of psychrophilic strains of Pleurotus eryngii were analyzed by randomly amplified polymorphic DNA (RAPD) using OP-A, OP-B, OP-L, OP-P, OP-R and OP-S3 primers to develop the strain-specific DNA marker. A unique DNA fragment with the size of 480 bp was yielded by OP-S3 primer from the psychrophilic strain. A sequence characterized amplified region (SCAR) marker, designated as OP-S3-1, was designed on the basis of the determined sequence. The PCR analysis with the OP-S3-1 primer showed that this SCAR marker can clearly distinguish the psychrophilic strains from the control strains.

Development of PCR-Based Sequence Characterized DNA Markers for the Identification and Detection, Genetic Diversity of Didymella bryoniae with Random Amplified polymorphic DNA(RAPD)

  • Kyo, Seo-Il;Shim, Chang-Ki;Kim, Dong-Kil;Baep, Dong-Won;Lee, Seon-Chul;Kim, Hee-Kyu
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.130-130
    • /
    • 2003
  • Gummy stem blight pathogen is very difficult not only to monitor the inoculum levels prior to host infection, and also it is destructive and hard to control in field condition. We have applied RAPD technique to elucidate the genetic diversity of the genomic DNA of Didymella bryoniae and also to generate specific diagnostic DNA probe useful for identification and detection. The 40 primers produced clear bands consistently from the genomic DNA of twenty isolates of Didymella bryoniae, and two hundred seventy-three amplified fragments were produced with 40 primers. The combined data from 273 bands was analyzed by a cluster analysis using UPGMA method with an arithmetic average program of NTSYS-PC (Version 1.80) to generate a dendrogram. At the distance level of 0.7, two major RAPD groups were differentiated among 20 strains. RAPD group (RG) I included 8 isolates from watermelon except one isolate from melon. RAPD group (RG) IV included 12 isolates from squash, cucumber, watermelon and melon.. In amplification experiment with SCAR specific primer RG1F-RG1R resulted in a single band of 650bp fragment only for 8 isolates out of 20 isolates that should be designated as RAPD Group 1. However, same set of experiment done with RGIIF-RGIIR did not result in any amplified product.. Our attempts to detect intraspecific diversity of ITS region of rDNA by amplifying ITS region and 17s rDNA region for 20 isolates and restriction digestion of amplified fragment with 12 enzymes did not reveal polymorphic band. In order to develop RAPD markers for RGIV specific primer, a candidate PCR fragment( ≒1.4kb) was purified and Southern hybridized to the amplified fragment RGIV isolates. This promising candidate probe recognized only RGIV isolates

  • PDF

Development and Application of PCR-based Markers for the Discrimination of Bang-Poong and Related Species (방풍류의 감별을 위한 분자마커의 탐색과 활용)

  • Hong, Seong-Mi;Lee, Mi-Young;Koh, Jae-Chul;Ko, Byoung-Soeb
    • Journal of Plant Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Bang-Poong and related species are an important herbal medicine. However, it is difficult to determine the commercial dry material through anatomical and chemotaxonomical characteristics. Here, we used a PCR-based technique for an accurate discrimination of Bang-Poong and related species. With the RAPD primers, 215 RAPDSs(random amplified polymorphic DNAs) were obtained, and 98% of them showed polymorphic patterns. RAPDs from the four primers were appropriate for the discrimination of S. divaricata $(T_{URCZ{\cdot}})\;S_{CHISKIN}$, those from the six primers for P. japonicum $T_{HUNBERG}$, those from the four primers for P. terebinthaceum $F_{ISHER}$, and those from the six primers for G. littoralis Fr. $S_{CHMIDT}$. The specific bands from the primer 425 were obtained and used to develop SCAR (sequence characterized amplified region) markers, based on the sequence information of the RAPD markers. The SCAR primers generated a 215 bp fragment specific to Peucedanum terebinthaceum $F_{ISHER}$, and a 177 bp and a 300 bp fragment specific to G. littoralis Fr. $S_{CHMIDT}$. As a result, the three SCAR markers were able to discriminate from two Bang-Poong related species.

Development of SCAR Markers for Early Identification of Cytoplasmic Male Sterility Genotype in Chili Pepper (Capsicum annuum L.)

  • Kim, Dong Hwan;Kim, Byung-Dong
    • Molecules and Cells
    • /
    • v.20 no.3
    • /
    • pp.416-422
    • /
    • 2005
  • We previously used Southern blot analysis to detect restriction-length polymorphisms between male fertile and cytoplasmic male sterile (CMS) cytoplasms at the coxII and atp6 loci of the mtDNA of Capsicum annuum L. Two copies of atp6 were found in each male fertile and CMS pepper lines. Interestingly, one of the copies of atp6 in CMS pepper was a 3'-truncated pseudogene. The open reading frame of the coxII gene was the same in the fertile (N-) and CMS (S-) lines. However, the nucleotide sequence in the S-cytoplasm diverged from that in the N-cytoplasm 41 bp downstream of the stop codon. To develop CMS-specific sequence-characterized amplified region (SCAR) markers, inverse PCR was performed to characterize the nucleotide sequences of the 5' and 3' flanking regions of mitochondrial atp6 and coxII from the cytoplasms of male fertile (N-) and CMS (S-) pepper plants. Based on these data, two CMS-specific SCAR markers, 607 and 708 bp long, were developed to distinguish N-cytoplasm from S-cytoplasm by PCR. The CMS-specific PCR bands were verified for 20 cultivars containing either N- or S-cytoplasm. PCR amplification of CMS-specific mitochondrial nucleotide sequences will allow quick and reliable identification of the cytoplasmic types of individual plants at the seedling stage, and assessment of the purity of $F_1$ seed lots. The strategy used in this report for identifying CMS-specific markers could be adopted for many other crops where CMS is used for F1 seed production.

Development of SCAR Markers for the Discrimination of Rhei Radix et Rhizoma and Rhei Undulatai Rhizoma based on the RAPD (RAPD 분석을 통한 대황(大黃)과 종대황(種大黃) 감별용 SCAR 유전자 마커 개발)

  • Moon, Byeong-Cheol;Lee, Young-Mi;Chun, Jin-Mi;Lee, A-Young;Yoon, Tae-Sook;Cheon, Myeong-Sook;Choo, Byung-Kil;Kim, Ho-Kyoung
    • The Korea Journal of Herbology
    • /
    • v.24 no.4
    • /
    • pp.115-120
    • /
    • 2009
  • Objectives : Due to the morphological similarity and frequent occurrence of intermediate forms as well as morphological variations of aerial part, the correct identification between Rhei Radix et Rhizoma and Rhei Undulatai Rhizoma is very difficult. To develop a reliable method for correct identification and improving the quality standards of Rhei Radix et Rhizoma and Rhei Undulatai Rhizoma, we analyzed RAPD and developed SCAR marker. Methods : To amplify target DNA at the genomic level, 32 Operon 10-mer random primers were applied with four Rheum species, R. officinale, R. palmatum, R. tanguticum and R. undulatum. The nucleotide sequences were determined and species-specific primers were prepared depending on the species-specific RAPD amplicons after subcloned into the pGEM-Teasy vector. To develop the SCAR markers, species-specific PCR amplification and multiplex-PCR were carried out using the single species-specific primer pairs and combinations of them, respectively. Results : We used RAPD analysis of four Rheum plant species to obtain several species-specific RAPD amplicons. From nucleotide sequences of these RAPD amplicons, we developed two SCAR markers that amplified 314 bp and 390 bp DNA fragments in only R. undulatum but not in R. officinale, R. palmatum, R. tanguticum and R. undulatum, for distinguishing Rhei Undulatai Rhizoma and Rhei Radix et Rhizoma. Furthermore, we established SCAR markers for the simultaneous discrimination of the three species within a single reaction by using multiplex-PCR. Conclusions : These genetic markers can be used for the efficient discrimination of plants species and commercial herbal medicines between Rhei Undulatai Rhizoma and Rhei Radix et Rhizoma, to ultimately prevent indiscriminate distribution and prescription of these herbal medicines.

Development and Application of Weonhyeong Strain-specific SCAR Marker in Pleurotus ostreatus (느타리 버섯에서 원형 품종 특이 SCAR marker 개발)

  • Seo, Kyoung-In;Jang, Kab-Yeul;Yoo, Young-Bok;Park, Soon-Young;Kim, Kwang-Ho;Kong, Won-Sik
    • The Korean Journal of Mycology
    • /
    • v.39 no.1
    • /
    • pp.22-30
    • /
    • 2011
  • Weonhyeong is one of important commercial strains. It has good characteristics of bundle formation, grey colored pilei and high productivity. We previously reported grouping of 70 strains of Pleurotus ostreatus in which one group contained 35 strains including Weonhyeong. Four strains in that group showed same profiles implicating no variety distinction for mushroom cultivation. Now we developed a specific marker for identification of Weonhyeong. Sequence Characterized Amplified Region (SCAR) marker was developed from the RAPD amplicon. SCAR marker 'S-OPO5' produced only one band specific to 2183, 2240, 2595 and 2725 strains showing similar banding patterns to Weonhyeong in RAPD-PCR results. The sequence of 'S-OPO5' marker was unknown when compared with the data in the Genbank using BLASTN. BLASTX results indicated that the marker showed significant alignment with the protein sequences in Tricholoma bakamatsutake reverse transcriptase. The results indicate that this new SCAR marker ('S-OPO5') will be valuable to distinguish the Weonhyeong similar strains from Pleurotus spp.

Application of SCAR markers to self-incompatibility genotyping in breeding lines of radish (Raphanus sativus L.)

  • Chung, Hee;Kim, Su;Park, HanYong;Kim, Ki-Taek
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.397-402
    • /
    • 2009
  • Self-incompatibility (SI) prevents self-fertilization by inhibiting the pollen tube growth of self-pollen. Molecular analysis has revealed that the S locus comprises a number of genes, such as the S-locus glycoprotein (SLG), the S-locus receptor kinase (SRK), and SP11 (SCR). Although molecular markers related to those genes have been developed, a simple S-haplotype detecting method has not been reported due to the highly polymorphic and relatively small coding regions. In this study, the sequence characterized amplified region (SCAR) markers were used to establish an efficient radish genotyping method. We identified the S-haplotypes of 192 radish accessions using 19 different markers, which proved to be highly reliable. The accessions were assigned to 17 types of S-haplotypes, including 8 types of SRKs and 9 types of SLGs. Since the developed SCAR markers are based on their gene sequences, we could easily identify the S-haplotypes by a single specific band, with the highest frequencies detected for SLG 5, SRK 1, and SLG 1, in order. Among the tested markers, the SLG 1, SRK 1, and SRK 5 markers exhibited high reliability, compared to phenotypic results. Furthermore, we identified the seven types of unreported SLGs using SLG Class -I and -II specific markers. Although the developed SCAR markers still need to be improved for the genotyping of all S-haplotypes, these markers could be helpful for monitoring inbred lines, and for developing the MAS in radish breeding programs.

Development SCAR marker for the rapid authenticaton of Batryticatus Bombyx based on COI Sequences (COI 염기서열 기반 백강잠 신속 감별용 SCAR marker 개발 - 백강잠 유전자 감별 -)

  • Kim, Wook Jin;Yang, Sungyu;Noh, Pureum;Park, Inkyu;Choi, Goya;Song, Jun-Ho;Moon, Byeong Cheol
    • The Korea Journal of Herbology
    • /
    • v.34 no.5
    • /
    • pp.13-20
    • /
    • 2019
  • Objectives : To ensure the safety, quality and pharmacological efficacy of Batryticatus Bombyx, it is important to discriminate with adulterants. In Korean Herbal Pharmacopoeias (KHP), the authentic species of Batryticatus Bombyx is defined only Bombyx mori. Therefore, the aim of this study is establishment of PCR assay method using the sequence characterized amplified region (SCAR) marker based on COI DNA barcode for discriminating six species related to Batryticatus Bombyx. Methods : Seventeen samples of six species (Bombyx mori, Bombyx mandarina, Rhodinia fugax, Oberthueria caeca, Actias artemis, and Caligula japponica) were collected from different habitate and nucleotide sequences of cytochrome c oxidase subunit I(COI) barcode regions were analyzed by Sanger sequencing methods. To develop SCAR-based PCR assay method, we designed species-specific primers based on COI sequence variabilities and verified those specificities using 17 samples of six species as well as commercial herbal medicines. Results : In comparative multiple analysis of COI sequences, six species were distinguished by species-specific nucleotides at the species level. To develop rapid and reliable PCR assay method for genetic authentication of Batryticatus Bombyx, therefore, we designed species-specific SCAR primers based on these nucleotide sequences and confirmed those specificities. Using these SCAR primers, We also established simple conventional PCR assay method using these SCAR primers at the species level. Conclusions : The comparative analysis of COI sequences and SCAR-based PCR assay methods represented equal results for distinguishing authentic Batryticatus Bombyx and adulterations at the species level. Therefore, our results are expected protecting adulteration of herbal medicine Batryticatus Bombyx.