• Title/Summary/Keyword: Separate of particles

Search Result 143, Processing Time 0.021 seconds

Deinking efficiency of ONP with enzyme blended deinking agent (복합탈묵제의 ONP 탈묵 적성)

  • Yun, Kyong-Dong;Park, Heon-Sin;Eom, Tae-Jin
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2006.04a
    • /
    • pp.167-173
    • /
    • 2006
  • Deinking is a series of unit operations designed to detach ink from cellulose fibers and separate the dispersed ink from the pulp slurry. Deinking chemicals are process aids that enable expensive mill equipment used in these unit operations to operate more efficiently - often much more efficiently. We propose the blended deinking agent with cellulolutic enzymes and synthetic collector in deinking pulp of conventional alkaline method. The deinking efficiency of old news print in alkaline pH was enhanced with enzyme treatments. The brightness of deinked pulp was increased with less residual ink particles and yield of enzymatic deinked pulp was improved compared to the deinked pulp of conventional alkaline method. Enzymes in biomass were use to Chemical Deinking for reduce environment pollution through surfactant and improve surfactants. examining into compatibility Enzymes and surfactants, these new materials are studied efficiency of deinking efficiency.

  • PDF

Synthesis of Platinum Nanoparticles by Liquid Phase Reduction (액상환원공정을 이용한 백금 나노 입자의 합성)

  • Lee, Jin-Ho;Kim, Se-Hoon;Kim, Jin-Woo;Lee, Min-Ha;Kim, Young-Do
    • Journal of Powder Materials
    • /
    • v.19 no.1
    • /
    • pp.60-66
    • /
    • 2012
  • In this study, Platinum(Pt) nanoparticles were synthesized by using polyol process which is one of the liquid phase reduction methods. Dihydrogen hexachloroplatinate (IV) hexahydrate $(H_2PtCl_6{\cdot}6H_2O)$, as a precursor, was dissolved in ethylene glycol and silver nitrate ($AgNO_3$) was added as metal salt for shape control of Pt particle. Also, polyvinylpyrrolidone (PVP), as capping agent, was added to reduce the size of particle and to separate the particles. The size of Pt nanoparticles was evaluated particle size analyzer (PSA). The size and morphology of Pt nanoparticles were observed by transmission electron microscopy (TEM) and high resolution TEM (HRTEM). Synthesized Pt nanoparticles were studied with varying time and temperature of polyol process. Pt nanoparticles have been successfully synthesized with controlled sizes in the range 5-10 and 20-40 nm with cube and multiple-cube shapes.

Permeability Reduction of Geotextile Filters Induced by Clogging (폐색으로 인한 부직포의 투수능 저하 현상)

  • ;;Lakshmi N. Reddi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.481-488
    • /
    • 2000
  • The mechanism of soil-geotextile system has been studied among researchers since the application of geotextile as a replacement of graded granular filters is rapidly growing. The interaction of soils with geotextile is rather complicated so that its design criteria are mostly based on empiricism. Hence, it is essential to study the characteristics of fine particles transport into geotextile induced by the groundwater flow In this study, the permeability reduction in the soil-filter system due to clogging phenomenon is evaluated. An extensive research program is performed using two typical weathered residual soils which are sampled at Shinnae-dong and Poi-dong area in Seoul. Two separate simulation tests with weathered residual soil are peformed: the one is the filtration test(cross-plane flow test): and the other is the drainage test(in-plane flow test). Needle punched non-woven geotextiles are selected since it is often used as a drainage material in the field. The compatibility of the soil-filter system is investigated with emphasis on the clogging phenomenon. The hydraulic behaviour of the soil-filter system is evaluated by changing several testing conditions.

  • PDF

Morphological Feature Extraction of Microorganisms Using Image Processing

  • Kim Hak-Kyeong;Jeong Nam-Su;Kim Sang-Bong;Lee Myung-Suk
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.1
    • /
    • pp.1-9
    • /
    • 2001
  • This paper describes a procedure extracting feature vector of a target cell more precisely in the case of identifying specified cell. The classification of object type is based on feature vector such as area, complexity, centroid, rotation angle, effective diameter, perimeter, width and height of the object So, the feature vector plays very important role in classifying objects. Because the feature vectors is affected by noises and holes, it is necessary to remove noises contaminated in original image to get feature vector extraction exactly. In this paper, we propose the following method to do to get feature vector extraction exactly. First, by Otsu's optimal threshold selection method and morphological filters such as cleaning, filling and opening filters, we separate objects from background an get rid of isolated particles. After the labeling step by 4-adjacent neighborhood, the labeled image is filtered by the area filter. From this area-filtered image, feature vector such as area, complexity, centroid, rotation angle, effective diameter, the perimeter based on chain code and the width and height based on rotation matrix are extracted. To prove the effectiveness, the proposed method is applied for yeast Zygosaccharomyces rouxn. It is also shown that the experimental results from the proposed method is more efficient in measuring feature vectors than from only Otsu's optimal threshold detection method.

  • PDF

Application of nanofiltration membrane in the recovery of aluminum from alkaline sludge solutions

  • Cheng, Wen Po;Chi, Fung Hwa;Yu, Ruey Fang;Tian, Dun Ren
    • Advances in environmental research
    • /
    • v.5 no.2
    • /
    • pp.141-151
    • /
    • 2016
  • Large amounts of aluminum hydroxide ($Al(OH)_3$) exist in water purification sludge (WPS) because of the added aluminum coagulant in water treatment process. Notably, $Al(OH)_3$ is an amphoteric compound, can be dissolved in its basic condition using sodium hydroxide to form aluminate ions ($Al(OH)_4{^-}$). However, in a process in which pH is increasing, the humid acid can be dissolved easily from WPS and will inhibit the recovery and reuse of the dissolved aluminate ions. This study attempts to fix this problem by a novel approach to separate $Al(OH)_4{^-}$ ions using nanofiltration (NF) technology. Sludge impurity in a alkaline solution is retained by the NF membrane, such that the process recovers $Al(OH)_4{^-}$ ions, and significantly decreases the organic matter or heavy metal impurities in the permeate solution. The $Al(OH)_4{^-}$ ion is an alkaline substance. Experimental results confirm that a recovered coagulant of $Al(OH)_4{^-}$ ion can effectively remove kaolin particles from slightly acidic synthetic raw water.

Investigation on Flocculi-floc Interaction and Flocculation in Extracellular Polymeric Substances, Ionic Species and Clay-containing Suspension (생체고분자물질 농도와 이온강도에 따른 점토입자 현탁액의 응집핵-응집체 이군집 응집 특성 연구)

  • Kim, Jae In;Lee, Byung Joon
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.3
    • /
    • pp.185-193
    • /
    • 2020
  • Bimodal flocculation describes the aggregation and breakage processes of the flocculi (or primary particles) and the flocs in the water environment. Bimodal flocculation causes bimodal size distribution with the two separate peaks of the flocculi and the flocs. Extracellular polymeric substances and ionic species common in the water environment increase the occurrence of bimodal flocculation and flocculi-floc size distribution, under the flocculation mechanisms of electrostatic attraction and polymeric bridging. This study investigated bimodal flocculation and flocculi-floc size distribution, with respect to the extracellular polymeric substance concentration and ionic strength in the kaolinite-containing suspension. The batch flocculation tests comprising 0.12 g/L of kaolinite showed that the highest flocculation potential occurred at the lowest xanthan gum (as extracellular polymeric substances) concentration, under all the ionic strengths of 0.001, 0.01, and 0.1 M NaCl. Also, it was important to note that the higher ionic strength resulted in the higher flocculation potential, at all the xanthan gum concentrations. The bimodal flocculation and flocculi-floc size distribution became apparent in the experimental conditions, which had low and intermediate flocculation potential. Besides the polymeric bridging flocculation, steric stabilization increased the flocculi mass fraction against the floc mass fraction, thereby developing the bimodal size distribution.

Alternative Breaching Methods of the TRISO Fuels

  • Lee Jong-Hyeon;Shim Joon-Bo;Ahn Byung-Gil;Kwon Sang-Woon;Kim Eung-Ho;Yoo Jae-Hyung;Park Seong-Won
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2005.11b
    • /
    • pp.92-106
    • /
    • 2005
  • The head-end processes of spent TRISO fuel have been reviewed to understand the current status and the limitations of the reported processes. The main concerns in the TRISO treatment are to effectively breach and separate the carbon and SiC layers composing the TRISO particles. The crush-bum scheme which was considered in the early stages of the development has been replaced by the crush-leach or $CO_2$ burning and the succeeding CO decomposition process because of a sequestration problem of $CO_2$ containing $^{14}C$. However there are still many obstacles to overcome in the reported processes. Hence, innovative thermomechanical and pyrochemical concepts to breach the coating layers of the TRISO particle with a minimized amount of second waste are proposed in this paper and their principles are described in detail.

  • PDF

Development of Multiscale Simulation Technique for Multiphase Fluid System (다상 유체 시스템의 다중 스케일 시뮬레이션 기법에 관한 연구)

  • Han, Min-Sub
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.6
    • /
    • pp.569-577
    • /
    • 2010
  • A multiscale particle simulation technique that can be applied to a multiphase fluid system has been developed. In the boundary region where the macroscopic- and microscopic-scale models overlap each other, three distinctive features are introduced in the simulation. First, a wall is set up between the gas and liquid phases to separate them and match the phases respectively to the macroscopic conditions stably. Secondly, the interfacial profile is obtained near the matching region and the wall translates and rotates to accommodate the change in the liquid-vapor interfacial position in the molecular model. The contact angle thus obtained can be sent to the macroscopic model. Finally, a state of mass and temperature in the region is maintained by inserting and deleting the particles. Good matching results are observed in the cases of the complete and partial wetting fluid systems.

Continuous Operation of $CO_2$/NOx-free 50kW Checmial-Looping Combustor ($CO_2$/NOx-free 50kW 매체순환식 가스연소기 산화-환원 연속반응 실증)

  • Ryu, Ho-Jung;Jin, Gyoung-Tae;Yi, Chang-Keun
    • 한국연소학회:학술대회논문집
    • /
    • 2004.06a
    • /
    • pp.227-234
    • /
    • 2004
  • For gaseous fuel combustion with inherent $CO_2$ capture and low NOx emission, chemical-looping combustion(CLC) may yield great advantages of savings of energy to $CO_2$ separation and suppressing the effect on environment. In chemical-looping combustor, fuel is oxidized by metal oxide medium (oxygen carrier particle) in a reduction reactor. Reduced particles are transported to oxidation reactor and oxidized by air and recycled to reduction reactor. The fuel and the air are never mixed, and the gases from reduction reactor, $CO_2$ and $H_2O$, leave the system as separate stream. The $H_2O$ can be easily separated by condensation and pure $CO_2$ is obtained without any loss of energy for separation. The purpose of this study is to demonstrate inherent $CO_2$ separation and no NOx emission and to confirm high $CO_2$ selectivity, no side reaction (i.e., carbon deposition, hydrogen generation) by continuous reduction and oxidation experiment in a 50kWtb chemical-looping combustor. NiO/bentonite particle was used as a bed material and $CH_4$ and air were used as reacting gases for reduction and oxidation respectively.

  • PDF

Pervaporation of Butanol from their Aqueous Solution using a PDMS-Zeolite Composite Membrane (PDMS-Zeolite 복합막을 이용한 부탄올 투과증발)

  • Kong, Chang-In;Cho, Moon-Hee;Lee, Yong-Taek
    • Korean Chemical Engineering Research
    • /
    • v.49 no.6
    • /
    • pp.816-822
    • /
    • 2011
  • Pervaporation is known to be a low energy consumption process since it needs only an electric power to maintain the permeate side in vacuum. Also, the pervaporation is an environmentally clean technology because it does not use the third material such as an entrainer for either an azeotropic distillation or an extractive distillation. In this study, Silicalite-1 particles are hydrothermally synthesized and polydimethylsiloxane(PDMS)-zeolite composite membranes are prepared with a mixture of synthesized Silicalite-1 particles and PDMS-polymer. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the weight % of Silicalite-1 particles in the membrane. A 1,000 $cm^3$ aqueous solution containing butanol of low mole fraction such as order of 0.001 was used as a feed to the membrane cell while the pressure of the permeation side was kept about 0.2~0.3 torr. When the butanol concentration in the feed solution was 0.015 mole fraction, the flux of n-butanol significantly increased from 14.5 g/ $m^2$/hr to 186.3 g/$m^2$/hr as the Silicalite-1 content increased from 0 wt% to 10 wt%, indicating that the Silicalite-1 molecular sieve improved the membrane permselectivity from 4.8 to 11.8 due to its unique crystalline microporous structure and its strong hydrophobicity. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.07 to 0.15 mole fraction. This composite membrane could be potentially appliable for separation of n-butanol from insitu fermentation broth where n-butanol is produced at a fairly low concentration of 0.015 mole fraction.