DOI QR코드

DOI QR Code

Pervaporation of Butanol from their Aqueous Solution using a PDMS-Zeolite Composite Membrane

PDMS-Zeolite 복합막을 이용한 부탄올 투과증발

  • Kong, Chang-In (Dept. of Chem. Eng., College of Eng., Chungnam National University) ;
  • Cho, Moon-Hee (Dept. of Chem. Eng., College of Eng., Chungnam National University) ;
  • Lee, Yong-Taek (Dept. of Chem. Eng., College of Eng., Chungnam National University)
  • Published : 2011.12.01

Abstract

Pervaporation is known to be a low energy consumption process since it needs only an electric power to maintain the permeate side in vacuum. Also, the pervaporation is an environmentally clean technology because it does not use the third material such as an entrainer for either an azeotropic distillation or an extractive distillation. In this study, Silicalite-1 particles are hydrothermally synthesized and polydimethylsiloxane(PDMS)-zeolite composite membranes are prepared with a mixture of synthesized Silicalite-1 particles and PDMS-polymer. They are used to separate n-butanol from its aqueous solution. Pervaporation characteristics such as a permeation flux and a separation factor are investigated as a function of the feed concentration and the weight % of Silicalite-1 particles in the membrane. A 1,000 $cm^3$ aqueous solution containing butanol of low mole fraction such as order of 0.001 was used as a feed to the membrane cell while the pressure of the permeation side was kept about 0.2~0.3 torr. When the butanol concentration in the feed solution was 0.015 mole fraction, the flux of n-butanol significantly increased from 14.5 g/ $m^2$/hr to 186.3 g/$m^2$/hr as the Silicalite-1 content increased from 0 wt% to 10 wt%, indicating that the Silicalite-1 molecular sieve improved the membrane permselectivity from 4.8 to 11.8 due to its unique crystalline microporous structure and its strong hydrophobicity. Consequently, the concentration of n-butanol in the permeate substantially increased from 0.07 to 0.15 mole fraction. This composite membrane could be potentially appliable for separation of n-butanol from insitu fermentation broth where n-butanol is produced at a fairly low concentration of 0.015 mole fraction.

투과증발법은 투과 측의 진공 유지에 필요한 전력만을 소비하기 때문에 에너지 저감 기술이며, 공비증류와 같이 제 3의 보조 화학 물질을 사용하지 않기 때문에 환경 친화 기술로 알려져 있다. 본 연구에서는 수열 합성을 통해 Silicalite-1을 합성하고 이를 PDMS 고분자에 적절한 양을 첨가하여 PDMS-zeolite 복합막을 제조하였다. 제조한 분리막을 이용하여 n-부탄올 수용액으로부터 n-부탄올을 분리하였다. 공급 수용액의 농도 변화 및 첨가한 제올라이트의 양 변화에 따른 투과증발 특성을 관찰하였다. 부탄올 농도가 매우 낮은 0.001 몰분율이 포함된 1,000 $cm^3$ 수용액을 용기로 공급하였다. 투과측의 압력을 약 0.2~0.3 torr로 유지하였다. n-부탄올의 투과플럭스는 공급된 n-부탄올의 농도가 0.015 몰분율인 실험조건에서 복합막 내의 Silicalite-1의 첨가량이 0 wt%에서 10 wt%로 증가함에 따라 14.5에서 186.3 g/$m^2$/hr로 크게 증가하였다. 이는 제올라이트 입자가 지닌 미세공 구조와 강력한 소수성으로 인하여 분리막의 분자 선택성이 4.8에서 11.8로 상당히 개선되었음을 의미한다. 이러한 결과로 투과된 투과물 내의 n-부탄올의 농도가 0.07 몰분율에서 0.15 몰분율로 상당히 증가함을 알 수 있었다. 이렇게 합성된 복합막을 n-부탄올 농도가 0.015 몰분율 이하의 상당히 낮은 발효액으로부터 분리 회수하는데 유용하게 활용될 수 있을 것으로 사료된다.

Keywords

References

  1. Sang, B. I. and Kim, Y. H., "Production of Biobutanol as Automobile Fuel for the Next Generation," News Inf. Chem. Eng., 26(6), 704(2008).
  2. Lee, Y. M., "Pervaporation of Organic Liquid Mixtures Through Polymer Membranes," Polymer., 13(1), 3(1989).
  3. Brun, J. P., Larchet, C., Bulvestre, G. and Auclair, B., "Sorption and Pervaporation of Dilute Aqueous Solutions of Organic Compounds through Polymer Membranes," J. Membr. Sci., 25(1), 55 (1985). https://doi.org/10.1016/S0376-7388(00)83003-3
  4. Lee, Y. M., Bourgeois, D. and Belfort, G., "Sorption, Diffusion and Pervaporation of Organics in Polymer Membranes," J. Membr. Sci., 44(2-3), 161(1989). https://doi.org/10.1016/S0376-7388(00)83350-5
  5. Kim, H. J., Song, Y. S. and Min, B. R., "The Study on the Recovery of Volatile Organic Components by Pervaporation," Membrane Journal. 9(1), 51(1999).
  6. Nunes, S. P., Peinemann, K. V., Ohlrogge, K., Alpers, A., Keller, M. and Pires, A. T. N., "Membranes of Poly(ether imide) and Nanodispersed Silica," J. Membr. Sci., 157(2), 219(1999). https://doi.org/10.1016/S0376-7388(98)00379-2
  7. Jia, M., Peinemann, K. V. and Behling, R. D., "Molecular Sieving Effect of The Zeolite-filled Silicone Rubber Membrane in Gas Permeation," J. Membr. Sci., 57(2-3), 289(1991). https://doi.org/10.1016/S0376-7388(00)80684-5
  8. Ikegami, T., Negishi, H., Kitamoto, D., Sakaki, K., Imura, T., Okamoto, M., Idemoto, Y., Koura, N., Sano, T., Haraya, K. and Yanagishita, H., "Stabilization of Bioethanol Recovery with Silicone Rubber-Coated Ethanol-Permselective Silicalite Membranes by Controlling the PH of Acidic Feed Solution," J. Chem. Technol. Biotechnol., 80(4), 381(2005). https://doi.org/10.1002/jctb.1229
  9. Dobrak, A., Figoli, A., Chovau, S., Galiano, F., Simone, S., Vankelecom, I.F.J., Drioli, E. and Van der Bruggen, B., "Performance of PDMS Membranes in Pervaporation : Effect of Silicalite Fillers and Comparison with SBS Membranes," J. Colloid Interface Sci., 346(1), 254(2010). https://doi.org/10.1016/j.jcis.2010.02.023
  10. Dotremont, C., Goethaert, S. and Vandecasteele, C., "Pervaporation Behaviour of Chlorinated Hydrocarbons through Organophilic Membranes," Desalination., 91(2), 177(1993). https://doi.org/10.1016/0011-9164(93)80056-S
  11. Joly, C., Goizet, S., Schrotter, J. C., Sanchez, J. and Escoubes, M., "Sol-gel Polyimide-Silica Composite Membrane : Gas Transport Properties," J. Membr. Sci., 130(1-2), 63(1997). https://doi.org/10.1016/S0376-7388(97)00008-2
  12. Choi, S. H., Kim, J. H. and Lee, S. B., "Sorption and Permeation Behaviors of a Series of Olefins and Nitrogen Through PDMS Membranes," J. Membr. Sci., 299(1-2), 54(2007). https://doi.org/10.1016/j.memsci.2007.04.022
  13. Zhao, C., Li, J., Qi, R., Chen, J. and Luan, Z., "Pervaporation Separation of N-heptane/Sulfur Species Mixtures with Polydimethylsiloxane Membranes," Sep. Purif. Technol., 63(1), 220(2008). https://doi.org/10.1016/j.seppur.2008.05.003
  14. Pereira, C. C., Habert, C. A., Nobrega, R. and Borges, C. P., "New Insights in the Removal of Diluted Volatile Organic Compounds from Dilute Aqueous Solution by Pervaporation Process," J. Membr. Sci., 138(2), 227(1998). https://doi.org/10.1016/S0376-7388(97)00225-1
  15. Zbik, M. S. and Frost, R. L., "PDMS Spreading Morphological Patterns on Substrates of Different Hydrophilicity in Air Vacuum and Water," J. Colloid Interface Sci., 344(2), 563(2010). https://doi.org/10.1016/j.jcis.2009.12.065
  16. Dotremont, C., Brabants, B., Geeroms, K., Mewis, J. and Vandecasteele, C., "Sorption and Diffusion of Chlorinated Hydrocarbons in Silicalite-Filled PDMS Membranes," J. Membr. Sci., 104, 109(1995). https://doi.org/10.1016/0376-7388(95)00019-9
  17. Ahn, H. S. and Lee, Y. T., "Pervaporation of Dichlorinated Organic Compounds through Silicalite-1 Zeolite Membrane," J. Membr. Sci., 279, 459(2006). https://doi.org/10.1016/j.memsci.2005.12.060
  18. Ryu, B. H., Chang, B. J., Kim, J. H. and Kim, W. N., "Pervaporative Recovery of Bio-butanol through Dense- and Compositetype PDMS Membranes," Membrane Journal., 19(2), 157(2009).
  19. Guth, J. L., Kessler, H. and Wey, R., "New Route to Pentasil- Type Zeolites Using a Non Alkaline Medium in the Presence of Fluoride Ions," Stud. Surf. Sci. Catal., 28, 121(1986). https://doi.org/10.1016/S0167-2991(09)60864-8
  20. Bowen, T. C., Li, S., Noble, R. D. and Falconer, J. L., "Driving Force for Pervaporation through Zeolite Membranes," J. Membr. Sci., 225, 165(2003). https://doi.org/10.1016/j.memsci.2003.07.016
  21. Gomes, D., Nunes, S. P. and Peinemann, K. V., "Membranes for Gas Separation Based on Poly(1-trimethylsilyl-1-propyne)-Silica Nanocomposites," J. Membr. Sci., 246, 13(2005). https://doi.org/10.1016/j.memsci.2004.05.015
  22. He, Z., Pinnau, I. and Morisato, A., "Nanostructured Poly(4-methyl- 2-pentyne)/Silica Hybrid Membranes for Gas Separation," Desalination., 146, 11(2002). https://doi.org/10.1016/S0011-9164(02)00463-0
  23. Fouad, E. A. and Feng, X., "Pervaporative Separation of N-butanol from Dilute Aqueous Solutions using Silicalite-Filled Poly(dimethyl siloxane)Membranes," J. Membr. Sci., 339, 120(2009). https://doi.org/10.1016/j.memsci.2009.04.038
  24. Zhou, H., Su, Y., Chen, X. and Wan, Y., "Separation of Acetone, Butanol and Ethanol(ABE) from Dilute Aqueous Solutions by Silicalite-1/PDMS Hydrid Pervaporation Membranes," Sep. Purif. Technol., 79(3), 375(2011). https://doi.org/10.1016/j.seppur.2011.03.026

Cited by

  1. Preparation of Organic/Inorganic Siloxane Composite Membranes and Concentration of n-butanol from ABE Solution by Pervaporation vol.51, pp.5, 2013, https://doi.org/10.9713/kcer.2013.51.5.580