• Title/Summary/Keyword: SeoulFoam

Search Result 97, Processing Time 0.026 seconds

Analysis of Inverse Heat Conduction Problem Using OpenFOAM and VisualDoc (OpenFOAM 과 VisualDoc 을 이용한 역열전도 문제의 해석)

  • Kim, Sung-Won;Kim, Sun Kyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.539-544
    • /
    • 2013
  • This study provides a solution method for the inverse heat conduction problem based on a combination of a public domain CAE (computer aided engineering) software and a commercial CAO (computer aided optimization) software. The solver system has been implemented without any in-house coding. The proposed method is simple to implement. Moreover, it can be easily reproduced.

The Effect of Aerated Concrete containing Foam Glass Aggregate on the Floor Impact Sound Insulation (발포유리 혼합기포 콘크리트의 바닥충격음 차단성능 영향에 관한 연구)

  • Yun, Chang-Yeon;Jeong, Jeong-Ho;Kim, Myung-Jun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.414-422
    • /
    • 2013
  • As structure-borne sound, the floor impact sound is one of the serious noises in residential building. Most of heating system applied to the typical Korean residential building is floor heating system which is called ondol. The ondol usually consists of finishing material, mortar with heating coil, light-weight aerated concrete and reinforced concrete. This study focused on the isolation of heavy-weight impact sound and modification of mortar and light-weight aerated concrete. Specifically the glass foam aggregate was added on light-weight aerated concrete. Also, water-cement ratio and amount of cement on mortar were revised. The sound pressure level of heavy-weight impact was measured in reverberation chamber using both bang-machine and impact ball. The size of specimen was 1 m by 1 m. Substitution ratio of glass foam aggregate on light-weight aerated concrete shows relationship with heavy-weight impact sound pressure level. In addition, heavy-weight impact sound pressure level was decreased with increment of water-cement ratio and amount of cement on mortar.

Effect of Al2O3 Inter-Layer Grown on FeCrAl Alloy Foam to Improve the Dispersion and Stability of NiO Catalysts (NiO 촉매의 분산성 및 안정성 향상을 위하여 FeCrAl 합금 폼 위에 성장된 Al2O3 Inter-Layer 효과)

  • Lee, Yu-Jin;Koo, Bon-Ryul;Baek, Seong-Ho;Park, Man-Ho;Ahn, Hyo-Jin
    • Korean Journal of Materials Research
    • /
    • v.25 no.8
    • /
    • pp.391-397
    • /
    • 2015
  • NiO catalysts/$Al_2O_3$/FeCrAl alloy foam for hydrogen production was prepared using atomic layer deposition (ALD) and subsequent dip-coating methods. FeCrAl alloy foam and $Al_2O_3$ inter-layer were used as catalyst supports. To improve the dispersion and stability of NiO catalysts, an $Al_2O_3$ inter-layer was introduced and their thickness was systematically controlled to 0, 20, 50 and 80 nm using an ALD technique. The structural, chemical bonding and morphological properties (including dispersion) of the NiO catalysts/$Al_2O_3$/FeCrAl alloy foam were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and scanning electron microscopy-energy dispersive spectroscopy. In particular, to evaluate the stability of the NiO catalysts grown on $Al_2O_3$/FeCrAl alloy foam, chronoamperometry tests were performed and then the ingredient amounts of electrolytes were analyzed via inductively coupled plasma spectrometer. We found that the introduction of $Al_2O_3$ inter-layer improved the dispersion and stability of the NiO catalysts on the supports. Thus, when an $Al_2O_3$ inter-layer with a 80 nm thickness was grown between the FeCrAl alloy foam and the NiO catalysts, it indicated improved dispersion and stability of the NiO catalysts compared to the other samples. The performance improvement can be explained by optimum thickness of $Al_2O_3$ inter-layer resulting from the role of a passivation layer.

On the Feasibility of Freak Waves Formation within the Harbor Due to the Presence of Infra-Gravity Waves of Bound Mode Underlying the Ever-Present Swells (Bound Mode의 외중력파에 의한 항내 이상파 생성가능성에 대하여)

  • Cho, Yong Jun;Bae, Jung Hyun
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.31 no.1
    • /
    • pp.17-27
    • /
    • 2019
  • We carry out the numerical simulation to test a hypothesis that freak waves can be triggered by the infragravity waves of bound mode underlying the ever-present swells and its constructive interaction with swells using the Tool Box called the ihFoam that has its roots on the OpenFoam, and Bi-spectrum. Numerical simulation is implemented for the SamChcuk LNG Plant where freak waves have been reported in front of the private wharf during its construction phase due to the uncompleted northern breakwater. Infra-gravity waves of bound mode is generated using the difference wave-wave interaction between the local wind waves of 7 s and a swell of 11.4 s based on the Bi-spectrum. For the sake of comparison, numerical simulation for infra-gravity waves of free mode is also carried out. Numerical results show that stem waves along the private wharf for SamChcuk LNG Plant can be triggered by the infra-gravity waves of bound mode coming from the north, which eventually leads to freak waves when encounters the reflected waves from the south jetty.

Compatibility of the Recycled Linerboard Made in Acid Sizing System under Neutral or Alkaline Papermaking Conditions (산성 사이징된 재활용 섬유와 중성 사이징의 상용성)

  • Seo, Man Seok;Lee, Kyong Ho;Lee, Hak Lae
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.56-60
    • /
    • 2016
  • Neutral or alkaline papermaking provides many advantages in paper strength and processing conditions. It also provides the opportunity of using calcium carbonate fillers in papermaking. These diverse advantages have made almost all paper machines of printing and writing papers run under neutral and alkaline conditions. On the other hand, linerboard machines, which use recycled papers as a raw material, are running under acid conditions using a rosin sizing system. Because the recycled raw materials used by the linerboard industry contain significant amounts of alkaline papers, the linerboard industry has an interest in the possibility of using the neutral or alkaline papermaking opportunity. In this study, the compatibility of the recycled linerboards under neutral or alkaline papermaking conditions was examined by recycling them under various pH conditions. The sizing degree of the papers recycled under neutral or alkaline was significantly lower than that of acid formed papers indicating that during the neutral or alkaline recycling process the rosin sized papers lost their sizing efficiency. Recycling of acid formed linerboards under neutral or alkaline conditions increased the amount of foam, and the foam contained substantial amount of solid materials derived from the acid sizing systems. Use of cationic polyelectrolytes including PEI and poly-DADMAC improved the sizing degree of the recycled papers under neutral and alkaline conditions. PEI decreased the foam generation as well while poly-DADMAC did not show any reducing effect of the foam. These results suggest that PEI forms coordinate bonds with rosin acid and precipitate them onto the surface of recycled fibers, while the reaction products between poly-DADMAC and rosin acid ions still remain water soluble under neutral or alkaline conditions.

Foams for Aquifer Remediation: Two Flow Regimes and Its Implication to Diversion Process

  • Kam, Seung-Ihl;Jonggeun Choe
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.1-11
    • /
    • 2004
  • Foam reduces the mobility of gas phase in porous media to overcome gravity override and to divert acid into desired layers in the petroleum industry and to enhance the efficiency of environmental remediation. Recent experimental studies on foam show that foam exhibits a remarkably different flow rheology depending on the flow regime. This study, for the first time, focuses on the issues of foam diversion process under the conditions relevant to groundwater remediation, combining results from laboratory linear-flow experiments and a simple numerical model with permeability contrasts. Linear flow tests performed at two different permeabilities (k = 9.1 and 30.4 darcy) confirmed that two flow regimes of steady-state strong foams were also observed within the permeability range of shallow geological formations. Foam exhibited a shear-thinning behavior in a low-quality regime and near Newtonian rheology in a high-quality regime. Data taken from linear flow tests were incorporated into a simple numerical model to evaluate the efficiency of foam diversion process in the presence of permeability contrasts. The simple model illustrated that foam in the high-quality regime exhibited a successful diversion but foam in the low-quality regime resulted in anti-diversion, implying that only foam in the high-quality regime would be applicable to the diversion process. Sensitivity study proved that the success of diversion process using foam in the high-quality regime was primarily controlled by the limiting capillary pressures (${P_c}{^*}$) of the two layers of interest. Limitations and implications are also discussed and included.

Identification of Complex Dispersion Relations in Cylindrical, Foam-Lined Ducts

  • Kim, Yong-Joe;Bolton, J. Stuart;Lee, Sung-Yop;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.1729-1734
    • /
    • 2000
  • Complex dispersion relations in a cylindrical, foam-lined duct were successfully identified by using an iterative Prony series method. Techniques for using the iterative procedure successfully are described in detail, particularly with regard to model order selection and the identification of parameter starting values. It is shown that modal wave speeds and spatial attenuations per wavelength can be derived from the complex dispersion relations obtained using the iterative procedure. In addition, a finite element simulation is shown to well represent corresponding experimental measurement in terms of modal wave speeds and spatial attenuations.

  • PDF

Finite Element Analysis for Sound Propagation Characteristics in a Duct Lined with Poroelastic Foams (유한요소해석을 통한 탄성폼이 대어진 덕트내의 소음전파 특성 해석)

  • Lee, Seung-Yup;Kang, Yeon-June
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.11b
    • /
    • pp.876-876
    • /
    • 2001
  • Axisymmetric finite element model is developed to determine sound propagation characteristics in a circular duct lined with a poroelastic foam. The foam and air models are derived based on the Biot's theory and the Helmholtz equation respectively and finally result in a quadratic eigenvalue problem in the wave number. Some cross sectional mode shapes are shown and sound attenuations and phase speeds of some acoustic modes are given. Those of fundamental modes are compared with those by forced response solutions and those from measurement results. The influence of lining thickness is also described on sound propagation characteristics.

  • PDF

Irrigation Method of Nutrient Solution Affect Growth and Yield of Paprika 'Veyron' Grown in Rockwool and Phenolic Foam Slabs (Rockwool과 Phenolic Foam 배지에서 양액공급 방법이 프리카(Capsicum annuum) 'Veron'의 생육과 수량에 미치는 영향)

  • Kim, Kwang Soo;Lee, Yong Beum;Hwang, Seung Jae;Jeong, Byoung Ryong;An, Chul Geon
    • Horticultural Science & Technology
    • /
    • v.31 no.2
    • /
    • pp.179-185
    • /
    • 2013
  • This study was carried out to find a reasonable irrigation method of a nutrient solution for the phenolic foam slab (foam LC) used in a trial experiment to substitute the rockwool slab in the production of paprika (Capsicum annuum 'Veyron'). 100, 90, and 80 mL of a nutrient solution was supplied per plant each time when the accumulated radiation reached to 100, $90J{\cdot}cm^{-2}$, and they were named as the 100-100, 90-90, and 90-80 treatment, respectively. The drain percentage per plant of the 100-100 treatment was high by 33.8% in rockwool and 36.7% in foam LC (Lettuce Cube) and that of 90-80 treatment was low by 30.4% and 33.7%. The water content and EC of the rockwool slab were maintained in the range of 63.6-68.9% and $4.4-5.1mS{\cdot}cm^{-1}$, while those of the foam LC slab were in the range of 52.9-58.8% and $5.5-6.5mS{\cdot}cm^{-1}$. The plant height and leaf size of the 100-100 and 90-90 treatments increased in a similar manner, while those of the 90-80 treatment decreased and those of the rockwool were greater than those of the foam LC. The fruit size and weight of the 100-100 and 90-90 treatments were similarly bigger and heavier than those of the 90-80 treatment. The number of fruits harvested per plant was the greatest in the 90-80 treatment with 8 and 8.3 fruits in the rockwool and foam LC. The number of marketable fruits in the rockwool and foam LC was the greatest with 18.1 and 18.2, respectively, in the 90-90 treatment, while that in the 90-80 treatment was 17.2 and 16.8, respectively. The number of unmarketable fruits of the 90-80 treatment was the greatest (1.7-1.8 fruits per plant) in both the rockwool and foam LC, and most of them were small sized or blossom end rot fruits. The yield of the 90-90 treatment was the greatest among the irrigation.