• Title/Summary/Keyword: Seogcheon series

Search Result 4, Processing Time 0.015 seconds

Determination of Optimum Rate and Interval of Silicate Fertilizer Application for Rice Cultivation in Korea (벼에 대한 규산질비료의 시용량 및 시용주기 결정)

  • Song, Yo-Sung;Jun, Hee-Joong;Jung, Beung-Gan;Park, Woo-Kyun;Lee, Ki-Sang;Kwak, Han-Kang;Yoon, Jung-Hui;Lee, Choon-Soo;Yeon, Byeong-Yeol;Kim, Pil-Joo;Yoon, Young-Sang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.354-363
    • /
    • 2007
  • In order to investigate the optimum rate and interval of silicate fertilizer application for rice cultivation, Chucheong byeo variety, one of commonly cultivated rice cultivar in Korea was planted on two different wetland rice soils located on Hwaseong-si from 2002 to 2005; Jisan series(a member of the fine loamy, mixed, mesic family of Fluvaquentic Endoaquepts), known as "Productive Paddy Soil", without any conspicuous limiting factor, and Seokcheon series (a member of the coarse loamy, mixed, nonacid, mesic family of Fluvaquentic Endoaquetps), known as "Sandy Paddy Soil", sandiness being major limiting factor. There were three rate treatments of silicate fertilizer application; the amount of silicate fertilizers needed to adjust the available soil silicate contents to 130, 200, and $270mg\;kg^{-1}$ was applied, in the first year only. There was an additional plot; applying the amount of silicate fertilizer needed to adjust soil available silicate to 130 ppm every year, which would serve as the base for the evaluation of residual effects of silicate fertilizers in the plots where different rates of silicate fertilizer were applied. From the yield data in first year, it was found that optimum available silica in the soil are $154mg\;kg^{-1$ and $160mg\;kg^{-1}$, in Jisan and Seogcheon soils, respectably. The duration of residual effects of silicate fertilizer was different depending upon the amount of applied silicate fertilizers and the soils. The higher the application rate, the residual effect lasted longer, and the residual effect was lasted longer in Jisan(clay loam) soil than in Seogcheon(sandy loam) soil. During four years, sum of the rate of contribution to increase available soil silica of applied silicate fertilizer in different soils ranged 18.6% and 24.1% in Jisan soil and Seogcheon soil, respectively. This may suggest that much portion of applied silicate would be either lost from the soil or remain in the soil as insoluble form. This deserves further study.

Comparison between natural and anthropogenic soils through fractal dimension analysis (프랙탈 차원 해석을 통한 인위토양과 자연토양 비교)

  • Shin, Kook-Sik;Oh, Taek-Keun;Hur, Seung-Oh;Hyun, Byung-Geun;Cho, Hyun-Joon;Sonn, Yeon-Kyu
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.379-384
    • /
    • 2014
  • In general, fractal analysis which is based on self-similarity as a basic theory has been mainly used to define the characteristics of complex mathematical figures, however, considering its basic theory, it can be also used to analyze the surface ununiformity of unknown materials. In this study, the soil samples were collected from the reclaimed (remodelled) agricultural fields which mean that the external soil is artificially piled up (mainly up to 1m) on the lands, Naju, Jellanam-do and Gumi, Gyeongsangbuk-do, and the conventional agricultural fields, Anseong, Gyeonggi-do and Hwasoon, Jellanam-do, and compared using fractal dimension analysis on the basis of the results of chemical properties. The score of fractal dimension ($D_0$) for organic matter was lower in Hwasoon (1.46) and Naju (1.58) than Anseong (1.86) and Gumi (1.96), and this trend showed similarly in soil pH. On the basis of the results of chemical properties, fine textured-soils (Hwasoon and Naju) and conventional agricultural fields were chemically uniform compared to coarse textured-soils (Anseong and Gumi) and the reclaimed. Therefore, it is required to develop technical methods for integrated soil management to the reclaimed lands.

Comparison of Disk Tension Infiltrometer and van Genuchten-Mualem Model on Estimation of Unsaturated Hydraulic Conductivity (장력 침투계(Disk Tension Infiltrometer)와 van Genuchten-Mualem 모형 적용에 따른 불포화수리 전도도의 비교 해석)

  • Hur, Seung-Oh;Jung, Kang-Ho;Park, Chan-Won;Ha, Sang-Keun;Kim, Geong-Gyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.5
    • /
    • pp.259-267
    • /
    • 2006
  • Hydraulic conductivity is the rate of water flux on hydraulic gradient. The van Genuchten Mualem (VGM) model is frequently used for describing unsaturated state of soils, that is composed with the function of soil water potential and soil water content and requests various parameters. This study is to get the value of VGM parameters used Rosetta computer program based on neural network analysis method and to calculate VGM parameters. VGM parameters included Ko(effective saturated hydraulic conductivity), ${\theta}r$(residual soil water content), ${\theta}s$(saturated soil water content), L, n and m. The unsaturated hydraulic conductivity at 10 kPa was calculated by using Rosetta program. Unsaturated hydraulic conductivities of 17 soil series at 1, 3, 5, 7 kPa were also obtained by applying saturated hydraulic conductivity by disk tension infiltrometer based on Gardner and Wooding's equation. Water flow at the water potential of 3 kPa was very low except Namgye, Hagog, Baegsan, Sangju, Seogcheon, Yesan soil series. Unsaturated hydraulic conductivity at 1 kPa showed the highest value for Samgag soil series and was in order of Yesan, Hwabong, Hagog and Baegsan soil series. Those of Gacheon, Seocheon and Ugog soil series were very low. When the value by VGM was compared with the value by disc tension infiltrometer, there was a tendency with exponential function to soils without gravel but there was no tendency to soils including gravel. Conclusively, it would be limited that VGM model for unsaturated hydraulic conductivity analysis applies to Korean agricultural land including gravel and having steep slope, shallow soil depth.

Development of Cropping System Involving a Two-Year Rotation of Three Upland Crops using Paddy Soil in the Middle Plain Area (중부지역 평야지 논 이용 밭작물 2년 3모작 작부모형 개발)

  • Kang-Bo Shim;Hyun-Min Cho;Myeon-Na Shin;Areum Han;Mi-Jin Chae;Jeong-Ju Kim;Seuk-Ki Lee;Weon-Tai Jeon
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.67 no.4
    • /
    • pp.199-210
    • /
    • 2022
  • This study aimed to develop a cropping system to use limited crop-land with optimum efficiency, while considering management from farmers. To establish the cropping system involving a two-year rotation of three crops, three types of cropping system were evaluated in Suwon (Seogcheon series) and Anseong (Geumcheon series) in the middle plain area using six crops from 2018 to 2019: maize-perilla-onion, potato-sesame-garlic, and maize-sesame-onion. The crop productivity and income of the cropping systems involving food-, oilseed-, and horticultural crops were analyzed, and the optimal cropping system was reviewed. The total yield of each crop was as follows: maize 1,281 kg, potato 4,837 kg, perilla 125 kg, sesame 120 kg, onion 6,503 kg, and garlic 1,027 kg per 10a. However, in terms of gross profit, the potato was more than 3.8 times more profitable than corn, sesame was 1.8 times more profitable than perilla, and garlic was more than 2.8 times more profitable than onions. As a result, in terms of net income, the potato-sesame-garlic cropping system produced the highest income per unit area. Sesame seedlings were planted after the potato harvest, thereby solving the problem of competition between the first and last crops. Overall, this study confirmed that the potato-sesame-garlic cropping system, a two-year rotation of three crops, contributed to the improvement of upland crop productivity and farmers' income and was an overall effective cropping system.