• Title/Summary/Keyword: Seo Yu-gu

Search Result 85, Processing Time 0.027 seconds

Red Ginseng Supplementation More Effectively Alleviates Psychological than Physical Fatigue

  • Choi, Ji-Young;Woo, Tae-Sun;Yoon, Seo-Young;Dela Pena, Ike Campomayor;Choi, Yoon-Jung;Ahn, Hyung-Seok;Lee, Yong-Soo;Yu, Gu-Yong;Cheong, Jae-Hoon
    • Journal of Ginseng Research
    • /
    • v.35 no.3
    • /
    • pp.331-338
    • /
    • 2011
  • Red ginseng (RG, the extract of Panax ginseng Meyer) has various biological and psychological activities and may also alleviate fatigue-related disorders. The present study was undertaken to evaluate what kind of fatigue red ginseng alleviate. Animals were orally administered with 50, 100, 200, 400 mg/kg of RG for 7 days. Before experiments were performed. Physiological stress (swimming, rotarod, and wire test) are behavioral parameters used to represent physical fatigue. Restraint stress and electric field test to a certain degree, induce psychological fatigue in animals. Plasma concentration of lactate and corticosterone (CORT) were also measured after these behavioral assays. RG supplementation (100 mg/kg) increased movement duration and rearing frequency of restrainted mice in comparison with control. 100 and 200 mg/kg of RG increased swimming time in cold water ($8{\pm}4^{\circ}C$) while at 100 mg/kg, RG increased electric field crossing over frequencies. 50, 100 and 200 mg/kg RG prolonged running time on the rotarod and at 100 mg/kg, it increased balancing time on the wire. RG at those doses also reduced falling frequencies. RG supplementation decreased plasma CORT levels, which was increased by stress. Lactate levels were not significantly altered. These results suggest that RG supplementation can alleviate more the damages induced by psychological than physical fatigue.

Characterization of D-Glucose ${\alpha}$-1-Phosphate Uridylyltransferase (VldB) and Glucokinase (VIdC) Involved in Validamycin Biosynthesis of Streptomyces hygroscopicus var. limoneus KCCM 11405

  • Seo Myung-Ji;Im Eun-Mi;Singh Deepak;Rajkarnikar Arishma;Kwon Hyung-Jin;Hyun Chang-Gu;Suh Joo-Won;Pyun Yu-Ryang;Kim Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.8
    • /
    • pp.1311-1315
    • /
    • 2006
  • Aminocyclitol antibiotic validamycin A, a prime control agent for sheath blight disease of rice plants, is biosynthesized by Streptomyces hygroscopicus var. limoneus. Within the validamycin biosynthetic gene cluster, vldBC forms an operon of vldABC with vidA, the gene encoding 2-epi-5-epi-valiolone synthase. Biochemical studies, employing the recombinant proteins from Escherichia coli, established VldB and VldC as D-glucose $\alpha$-1-phosphate uridylyltransferase and glucokinase, respectively. This finding substantiates that the validamycin biosynthetic gene cluster harbors genes encoding the enzymes for UDP-glucose formation from glucose. Therefore, we propose that validamycin biosynthesis employs its own catalysts to generate UDP-glucose, but not depending on the primary metabolism.

Production of Coenzyme $Q_{10}$ by Recombinant E. coli Harboring the Decaprenyl Diphosphate Synthase Gene from Sinorhizobium meliloti

  • Seo Myung-Ji;Im Eun-Mi;Hur Jin-Haeng;Nam Jung-Yeon;Hyun Chang-Gu;Pyun Yu-Ryang;Kim Soon-Ok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.933-938
    • /
    • 2006
  • Decaprenyl diphosphate synthase (DPS) is the key enzyme for the production of coenzyme $Q_{10}$ ($CoQ_{10}$). A dps gene from Sinorhizobium meliioti KCCM 11232 (IFO 14782) was isolated by PCR and then cloned in Escherichia coli. DNA sequencing analysis revealed an open reading frame of 1,017 bp encoding a 338-amino-acid protein. The protein was identical at the 98% level to the putative octaprenyl diphosphate synthase (IspB) of S. meliloti 1021. The deduced amino acid sequence included the DDxxD domains conserved in the majority of the prenyl diphosphate synthases. Heterologous expression in E. coli BL21 (DE3) was carried out, and the $CoQ_{10}$ produced was then analyzed by HPLC. E. coli BL21 (DE3) harboring the dps gene from S. melioti produced CoQ$_{10}$ in addition to endogenous coenzyme Q$_8$ (CoQ$_8$), whereas wild-type E. coli BL21 (DE3) host did not have the ability of producing CoQ$_{10}$. The results suggest that the putative dps from S. meliloti KCTC 2353 encoded the DPS.

The Preparation and Electrochemical Properties of $MnO_2$ Cathode for Lithium Rechargeable Battery (리튬 전지용 $MnO_2$ Cathode의 제조 및 전기화학적 특성)

  • Yu, Y.H.;Kim, Y.J.;Park, J.K.;Seo, B.W.;Jeong, I.S.;Kim, J.S.;Park, B.K.;Gu, H.B.;Moon, S.I.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1682-1684
    • /
    • 1996
  • Recently, because diffusion of cordless machine and smart card and so on, and concern of unpolluted materials, one are concerned with Li secondary batteries. Li secondary batteries have high voltage, high energy density and high power density, and heavy metal pollution problems are little. Mn is low price and is distributed much quantity. Therefore, we investigated $MnO_2$. In this study, we worked the electrochemical properties and charge/discharge characteristics of $MnO_2/Li$ cells. In results, the more heating temperature is high, the more ${\gamma}-phase$ varied ${\beta}-phase$, and when $MnO_2$ is heated at $320^{\circ}C$ and super-s-black 20wt% is mixed, characteristics are the best.

  • PDF

Polychlorinated Dibenzo-p-dioxins and Polychlorinated Dibenzofurans in Marine Sediments from Mokpo Coastal Water of Korea

  • Moon, Hyo-Bang;Kang, Sung-Kyung;Seo, Won-Ju;Choi, Min-Kyu;Yu, Jun;Choi, Hee-Gu;Park, Jong-Soo
    • Fisheries and Aquatic Sciences
    • /
    • v.10 no.2
    • /
    • pp.93-101
    • /
    • 2007
  • Concentrations of polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) were determined in marine sediments from Mokpo coastal water of Korea. Total and toxic equivalent (TEQ) concentrations of PCDD/Fs ranged from 19.4 to 175pg/g dry weight and ranged from 0.195 to 2.87 pg WHO-TEQ/g dry weight, respectively. These PCDD/F concentrations were below the safety sediment value (20 pg TEQ/g dry weight) of chronic toxicity. A highly significant correlation between the concentrations of PCDD/Fs and total organic carbon (TOC) in marine sediments was observed. Overall PCDD/F concentrations in the sediments were elevated in rivers and at inner locations close to harbors, indicating that these contaminants derived from local discharges of human activities. PCDD/F concentrations measured in our study were lower than those in several industrialized areas in Korea. Nonparametric multidimensional scaling (MDS) ordination showed that combustion processes from industrial complexes are the major source of PCDD/Fs in Mokpo coastal water.

The recent essay of Bijeung - Study of III- (비증(痺證)에 대(對)한 최근(最近)의 제가학설(諸家學說) 연구(硏究) - 《비증전집(痺證專輯)》 에 대(對)한 연구(硏究) III -)

  • Yang, Tae-Hoon;Oh, Min-Suk
    • Journal of Haehwa Medicine
    • /
    • v.9 no.1
    • /
    • pp.513-545
    • /
    • 2000
  • I. Introduction Bi(痺) means blocking. It can reach at the joints or muscles or whole body and make pains. Numbness and movement disorders. BiJeung can be devided into SilBi and HeoBi. In SilBi there are PungHanSeupBi, YeolBi and WanBi. In HeoBi, there are GiHyeolHeoBi, EumHeoBi and YangHeoBi. The common principle for the treatment of BiJeung is devision of the chronic stage and the acute stage. In the acute stage, BiJeung is usually cured easily but in the chronic stage, it is difficult. In the terminal stage, BiJeung can reach at the internal organs. BiJeung is one kind of symptoms making muscles, bones and jonts feel pain, numbness or edema. For example it can be gout or SLE etc. Many famous doctors studied medical science by their fathers or teachers. So the history of medical science is long. So I studied ${\ll}Bijeungjujip{\gg}$. II. Final Decision 1. BanSuMun(斑秀文) thought that BiJeung can be cured by blocking of blood stream. So he insisted that the important thing to cure BiJeung is to improve the blood stream. He usually used DangGuiSaYeokTang(當歸四逆湯), DangGuiJakYakSanHapORyeongSan, DoHong-SaMulTang(桃紅四物湯), SaMyoSanHapHeuiDongTang and HwangGiGyeJiOMulTang. 2. JangGeonBu(張健夫) focused on soothing muscles and improving blood seam. So he used many herbs like WiRyeongSeon(威靈仙), GangHwal(羌活), DokHwal(獨活), WooSeul(牛膝), etc. Especially he pasted wastes of the boiled herbs. 3. OSeongNong(吳聖農) introduced four rules to treat arthritis. So he usually used SeoGak-SanGaGam(犀角散加減), BoYanHwanOTang(補陽還五湯), ODuTang(烏頭湯), HwangGiGyeJiOMulTang. 4. GongJiSin thought disk hernia as one kind of BiJeung. And he said that Pung can hurt upper limbs and Seup can hurt lower limbs. He used to use GyeJiJakYakJiMoTang(桂枝芍藥知母湯). 5. LoJiJeong(路志正) introduced four principles to treat BiJeung. He used BangPungTang(防風湯), DaeJinGuTang) for PungBi(風痺), OPaeTang(烏貝湯) for HanBi(寒痺), YukGunJaTang(六君子湯) for SeupBi(濕痺) and SaMyoTang(四妙湯), SeonBiTang(宣痺湯), BaekHoGaGyeTang(白虎加桂湯) for YeolBi(熱痺). 6. GangChunHwa(姜春華) discussed herbs. He said SaengJiHwang(生地黃) is effective for PungSeupBi and WiRyungSun(威靈仙) is effective for the joints pain. He usually used SipJeonDaeBoTang(十全大補湯), DangGuiDaeBoTang(當歸大補湯), YoukGunJaTang(六君子湯) and YukMiJiHwanTang(六味地黃湯). 7. DongGeonHwa(董建華) said that the most important thing to treat BiJeung is how to use herbs. He usually used CheonO(川烏), MaHwang(麻黃) for HanBi, SeoGak(犀角) for YeolBi, BiHae) or JamSa(蠶沙) for SeupBi, SukJiHwang(熟地黃) or Vertebrae of Pigs for improving the function of kidney and liver, deer horn or DuChung(杜沖) for improving strength of body and HwangGi(黃?) or OGaPi(五加皮) for improving the function of heart. 8. YiSuSan(李壽山) devided BiJeung into two types(PungHanSeupBi, PungYeolSeupBi). And he used GyeJiJakYakJiMoTang(桂枝芍藥知母湯) for the treatment of gout. And he liked to use HwanGiGyeJiOMulTangHapSinGiHwan 枝五物湯合腎氣丸) for the treat ment of WanBi(頑痺). 9. AnDukHyeong(顔德馨) made YongMaJeongTongDan(龍馬定痛丹)-(MaJeonJa(馬錢子) 30g, JiJaChung 3g, JiRyong(地龍) 3g, JeonGal(全蝎) 3g, JuSa(朱砂) 0.3g) 10. JangBaekYou(張伯臾) devided BiJeung into YeolBi and HanBi. And he focused on improving blood stream. 11. JinMuO(陳茂梧) introduced anti-wind and dampness prescription(HoJangGeun(虎杖根) 15g, CheonChoGeun 15g, SangGiSaeng(桑寄生) 15g, JamSa(蠶絲) 15g, JeMaJeonJa(制馬錢子) 3g). 12. YiChongBo(李總甫) explained basic prescriptions to treat BiJeung. He used SinJeongChuBiEum(新定推痺陰) for HaengBi(行痺), SinJeongHwaBiSan(新定化痺散) for TongBi(痛痺), SinJeongGaeBiTang(新定開痺湯) for ChakBi(着痺), SinJeongCheongBiEum(新定淸痺飮) for SeupYeolBi(濕熱痺), SinRyeokTang(腎瀝湯) for PoBi(胞痺), ORyeongSan for BuBi(腑痺), OBiTang(五痺湯) for JangBi(臟痺), SinChakTang(腎着湯) for SingChakByeong(腎着病). 13. HwangJeonGeuk(黃傳克) used SaMu1SaDeungHapJe(四物四藤合制) for the treatment of a acute arthritis, PalJinHpPalDeungTang(八珍合八藤湯) or BuGyeJiHwangTangHapTaDeungTang(附桂地黃湯合四藤湯) for the chronic stage and ByeolGapJeungAekTongRakEum(鱉甲增液通絡飮) for EumHeo(陰虛) 14. GaYeo(柯與參) used HwalRakJiTongTang(活絡止痛湯) for shoulder ache, SoJongJinTongHwalRakTank(消腫鎭痛活絡湯) for YeolBi(熱痺), LiGwanJeolTang(利關節湯) for ChakBi(着痺), SinBiTang(腎痺湯) for SinBi(腎痺) and SamGyoBoSinHwan(三膠補腎丸) for back ache. 15. JangGilJin(蔣길塵) liked to use hot-character herbs and insects. And he used SeoGeunLipAnTang(舒筋立安湯) as basic prescription. 16. RyuJangGeol(留章杰) used GuMiGangHwalTang(九味羌活湯) and BangPungTang(防風湯) at the acute stage, ODuTang(烏頭湯) or GyeJiJakYakJiMoTang(桂枝芍藥知母湯) for HanBi of internal organs, YangHwaHaeEungTang(陽和解凝湯) for HanBi, DokHwalGiSaengTang(獨活寄生湯), EuiYiInTang(薏苡仁湯) for SeupBi, YukGunJaTang(六君子湯) for GiHeoBi(氣虛痺) and SeongYouTang(聖兪湯) for HyeolHeoBi(血虛痺). 17. YangYuHak(楊有鶴) liked to use SoGyeongHwalHyelTang(疏經活血湯) and he would rather use DoIn(桃仁), HongHwa(紅花), DangGui(當歸), CheonGung(川芎) than insects. 18. SaHongDo(史鴻濤) made RyuPungSeupTang(類風濕湯)-((HwangGi 200g, JinGu 20g, BangGi(防己) 15g, HongHwa(紅花) 15g, DoIn(桃仁) 15g, CheongPungDeung(靑風藤) 20g, JiRyong(地龍) 15g, GyeJi(桂枝) 15g, WoSeul(牛膝) 15g, CheonSanGap(穿山甲) 15g, BaekJi(白芷) 15g, BaekSeonPi(白鮮皮) 15g, GamCho(甘草) 15g).

  • PDF

A Literature Study of Dermatosurgical Diseases in the ImJeungJiNamUiAn (臨證指南醫案에 나타난 피부외과 질환에 대한 문헌고찰)

  • Cho, Jae-Hun;Chae, Byung-Yoon;Kim, Yoon-Bum
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.15 no.2
    • /
    • pp.271-288
    • /
    • 2002
  • Authors investigated the pathogenesis and treatment of dennatosurgical diseases in the ImJeungJiNamUiAn(臨證指南醫案). 1. The symptoms and diseases of dermatosurgery were as follows; 1) BanSaJinRa(반사진라) : eczema, atopic dermatitis, seborrheic dermatitis, psoriasis, lichen planus, pityriasis rosea, hives, dermographism, angioedema, cholinergic urticaria, urticaria pigmentosa, acne, milium, syringoma, keratosis pilaris, discoid lupus erythematosus, hypersensitivity vasculitis, drug eruption, polymorphic light eruption, rheumatic fever, juvenile rheumatoid arthritis(Still's disease), acute febrile neutrophilic dermatosis(Sweet's syndrome), Paget's disease, folliculitis, viral exanthems, molluscum contagiosum, tinea, tinea versicolor, lymphoma, lymphadenitis, lymphangitis, granuloma annulare, cherry angioma 2) ChangYang(瘡瘍) : acute stage eczema, seborrheic dermatitis, stasis ulcer, intertrigo, xerosis, psoriasis, lichen planus, ichthyosis, pityriasis rosea, rosacea, acne, keratosis pilaris, dyshidrosis, dermatitis herpetiformis, herpes gestationis, bullae in diabetics, pemphigus, lupus erythematosus, fixed drug eruption, erythema multiforme, toxic epidermal necrolysis, toxic shock syndrome, staphylococcal scaled skin syndrome, scarlet fever, folliculitis, impetigo, pyoderma gangrenosum, tinea, candidiasis, scabies, herpes simplex, herpes zoster, chicken pox, Kawasaki syndrome, lipoma, goiter, thyroid nodule, thyroiditis, hyperthyroidism, thyroid cancer, benign breast disorder, breast carcinoma, hepatic abscess, appendicitis, hemorrhoid 3) Yeok(疫) : scarlet fever, chicken pox, measles, rubella, exanthem subitum, erythema infectiosum, Epstein-Barr virus infection, cytomegalovirus infection, hand-foot-mouth disease, Kawasaki disease 4) Han(汗) : hyperhidrosis 2. The pathogenesis and treatment of dermatosurgery were as follows; 1) When the pathogenesis of BalSa(발사), BalJin(發疹), BalLa(발라) and HangJong(項腫) are wind-warm(風溫), exogenous cold with endogenous heat(外寒內熱), wind-damp(風濕), the treatment of evaporation(解表) with Menthae Herba(薄荷), Arctii Fructus(牛蒡子), Forsythiae Fructus(連翹) Mori Cortex(桑白皮), Fritillariae Cirrhosae Bulbus(貝母), Armeniaoae Amarum Semen(杏仁), Ephedrae Herba(麻黃), Cinnamomi Ramulus(桂枝), Curcumae Longae Rhizoma(薑黃), etc can be applied. 2) When the pathogenesis of BuYang(부양), ChangI(瘡痍) and ChangJilGaeSeon(瘡疾疥癬) are wind-heat(風熱), blood fever with wind transformation(血熱風動), wind-damp(風濕), the treatment of wind-dispelling(疏風) with Arctii Fructus(牛蒡子), Schizonepetae Herba(荊芥), Ledebouriellae Radix(防風), Dictamni Radicis Cortex(白鮮皮), Bombyx Batrytioatus(白??), etc can be applied. 3) When the pathogenesis of SaHuHaeSu(사후해수), SaJin(사진), BalJin(發疹), EunJin(은진) and BuYang(부양) are wind-heat(風熱), exogenous cold with endogenous heat(外寒內熱), exogenous warm pathogen with endogenous damp-heat(溫邪外感 濕熱內蘊), warm pathogen's penetration(溫邪內陷), insidious heat's penetration of pericardium(伏熱入包絡), the treatment of Ki-cooling(淸氣) with TongSeongHwan(通聖丸), Praeparatum(豆?), Phyllostachys Folium(竹葉), Mori Cortex(桑白皮), Tetrapanacis Medulla(通草), etc can be applied. 4) When the pathogenesis of JeokBan(적반), BalLa(발라), GuChang(久瘡), GyeolHaek(結核), DamHaek(痰核), Yeong(?), YuJu(流注), Breast Diseases(乳房疾患) and DoHan(盜汗) are stagnancy's injury of Ki and blood(鬱傷氣血), gallbladder fire with stomach damp(膽火胃濕), deficiency of Yin in stomach with Kwolum's check (胃陰虛 厥陰乘), heat's penetration of blood collaterals with disharmony of liver and stomach(熱入血絡 肝胃不和), insidious pathogen in Kwolum(邪伏厥陰), the treatment of mediation(和解) with Prunellae Spica(夏枯草), Chrysanthemi Flos(菊花), Mori Folium (桑葉), Bupleuri Radix(柴胡), Coptidis Rhizoma(黃連), Scutellariae Radix(黃芩), Gardeniae Fructus(梔子), Cyperi Rhizoma(香附子), Toosendan Fructus(川?子), Curcumae Radix(鬱金), Moutan Cortex(牧丹皮), Paeoniae Radix Rubra(赤芍藥), Unoariae Ramulus Et Uncus(釣鉤藤), Cinnamorni Ramulus(桂枝), Paeoniae Radix Alba(白芍藥), Polygoni Multiflori Radix (何首烏), Cannabis Fructus (胡麻子), Ostreae Concha(牡蠣), Zizyphi Spinosae Semen(酸棗仁), Pinelliae Rhizoma(半夏), Poria(백복령). etc can be applied. 5) When the pathogenesis of BanJin(반진), BalLa(발라), ChangI(瘡痍), NamgChang(膿瘡). ChangJilGaeSeon(瘡疾疥癬), ChangYang(瘡瘍), SeoYang(署瘍), NongYang(膿瘍) and GweYang(潰瘍) are wind-damp(風濕), summer heat-damp(暑濕), damp-warm(濕溫), downward flow of damp-heat(濕熱下垂), damp-heat with phlegm transformation(濕熱化痰), gallbladder fire with stomach damp(膽火胃濕), overdose of cold herbs(寒凉之樂 過服), the treatment of damp-resolving(化濕) with Pinelliae Rhizoma(半夏), armeniacae Amarum Semen(杏仁), Arecae Pericarpium(大腹皮), Poria(백복령), Coicis Semen(薏苡仁), Talcum(滑石), Glauberitum(寒水石), Dioscoreae Tokoro Rhizoma(??), Alismatis Rhizoma(澤瀉), Phellodendri Cortex(黃柏), Phaseoli Radiati Semen(?豆皮), Bombycis Excrementum(?沙), Bombyx Batryticatus(白??), Stephaniae Tetrandrae Radix(防己), etc can be applied. 6) When the pathogenesis of ChangPo(瘡泡), hepatic abscess(肝癰) and appendicitis(腸癰) are food poisoning(食物中毒), Ki obstruction & blood stasis in the interior(기비혈어재과), damp-heat stagnation with six Bu organs suspension(濕熱結聚 六腑不通), the treatment of purgation(通下) with DaeHwangMokDanPiTang(大黃牧丹皮湯), Manitis Squama(穿山甲), Curcumae Radix(鬱金), Curcumae Longae Rhizoma(薑黃), Tetrapanacis Medulla(通草), etc can be applied. 7) When the pathogenesis of JeokBan(적반), BanJin(반진), EunJin(은진). BuYang(부양), ChangI(瘡痍), ChangPo(瘡泡), GuChang(久瘡), NongYang(膿瘍), GweYang(潰瘍), Jeong(정), Jeol(癤), YeokRyeo(疫?) and YeokRyeolpDan(疫?入?) are wind-heat stagnation(風熱久未解), blood fever in Yangmyong(陽明血熱), blood fever with transformation(血熱風動), heat's penetration of blood collaterals(熱入血絡). fever in blood(血分有熱), insidious heat in triple energizer(三焦伏熱), pathogen's penetration of pericardium(心包受邪), deficiency of Yong(營虛), epidemic pathogen(感受穢濁), the treatment of Yong & blood-cooling(淸營凉血) with SeoGakJiHwangTang(犀角地黃湯), Scrophulariae Radix(玄參), Salviae Miltiorrhizae Radix(丹參), Angelicae Gigantis Radix(當歸), Polygoni Multiflori Radix(何首烏), Cannabis Fructus(胡麻子), Biotae Semen(柏子仁), Liriopis Tuber(麥門冬), Phaseoli Semen(赤豆皮), Forsythiae Fructus(連翹), SaJin(사진), YangDok(瘍毒) and YeokRyeoIpDan(역려입단) are insidious heat's penetration of pericardium(伏熱入包絡), damp-warm's penetration of blood collaterals(濕溫入血絡), epidemic pathogen's penetration of pericardium(심포감수역려), the treatment of resuscitation(開竅) with JiBoDan(至寶丹), UHwangHwan(牛黃丸), Forsythiae Fructus(連翹), Curcumae Radix(鬱金), Tetrapanacis Medulla(通草), Acori Graminei Rhizoma(石菖蒲), etc can be applied. 9) When the pathogenesis of SaHuSinTong(사후신통), SaHuYeolBuJi(사후열부지), ChangI(瘡痍), YangSon(瘍損) and DoHan(盜汗) are deficiency of Yin in Yangmyong stomach(陽明胃陰虛), deficiency of Yin(陰虛), the treatment of Yin-replenishing(滋陰) with MaekMunDongTang(麥門冬湯), GyeongOkGo(瓊玉膏), Schizandrae Fructus(五味子), Adenophorae Radix(沙參), Lycii Radicis Cortex (地骨皮), Polygonati Odorati Rhizoma(玉竹), Dindrobii Herba(石斛), Paeoniae Radix Alba(白芍藥), Ligustri Lucidi Fructus (女貞子), etc can be applied. 10) When the pathogenesis of RuYang(漏瘍) is endogenous wind in Yang collaterals(陽絡內風), the treatment of endogenous wind-calming(息風) with Mume Fructus(烏梅), Paeoniae Radix Alba (白芍藥), etc be applied. 11) When the pathogenesis of GuChang(久瘡), GweYang(潰瘍), RuYang(漏瘍), ChiChang(痔瘡), JaHan(自汗) and OSimHan(五心汗) are consumption of stomach(胃損), consumption of Ki & blood(氣血耗盡), overexertion of heart vitality(勞傷心神), deficiency of Yong(營虛), deficiency of Wi(衛虛), deficiency of Yang(陽虛), the treatment of Yang-restoring & exhaustion-arresting(回陽固脫) with RijungTang(理中湯), jinMuTang(眞武湯), SaengMaekSaGunjaTang(生脈四君子湯), Astragali Radix (황기), Ledebouriellae Radix(防風), Cinnamomi Ramulus(桂枝), Angelicae Gigantis Radix(當歸), Ostreae Concha(牡蠣), Zanthoxyli Fructus(川椒), Cuscutae Semen(兎絲子), etc can be applied.

  • PDF

A novel method for high-frequency genome editing in rice, using the CRISPR/Cas9 system (벼에서 CRISPR/Cas9 활용 고빈도 유전자 편집 방법)

  • Jung, Yu Jin;Bae, Sangsu;Lee, Geung-Joo;Seo, Pil Joon;Cho, Yong-Gu;Kang, Kwon Kyoo
    • Journal of Plant Biotechnology
    • /
    • v.44 no.1
    • /
    • pp.89-96
    • /
    • 2017
  • The CRISPR/Cas9 is a core technology that can result in a paradigm for breeding new varieties. This study describes in detail the sgRNA design, vector construction, and the development of a transgenic plant and its molecular analysis, and demonstrates how gene editing technology through the CRISPR/Cas9 system can be applied easily and accurately. CRISPR/Cas9 facilitates targeted gene editing through RNA-guided DNA cleavage, followed by cellular DNA repair mechanisms that introduce sequence changes at the site of cleavage. It also allows the generation of heritable-targeted gene mutations and corrections. Here, we present detailed procedures involved in the CRISPR/Cas9 system to acquire faster, easier and more cost-efficient gene edited transgenic rice. The protocol described here establishes the strategies and steps for the selection of targets, design of sgRNA, vector construction, and analysis of the transgenic lines. The same principles can be used to customize the versatile CRISPR/Cas9 system, for application to other plant species.

Utility of Integrated Analysis of Pharmacogenomics and Pharmacometabolomics in Early Phase Clinical Trial: A Case Study of a New Molecular Entity

  • Oh, Jaeseong;Yi, Sojeong;Gu, Namyi;Shin, Dongseong;Yu, Kyung-Sang;Yoon, Seo Hyun;Cho, Joo-Youn;Jang, In-Jin
    • Genomics & Informatics
    • /
    • v.16 no.3
    • /
    • pp.52-58
    • /
    • 2018
  • In this report, we present a case study of how pharmacogenomics and pharmacometabolomics can be useful to characterize safety and pharmacokinetic profiles in early phase new drug development clinical trials. During conducting a first-in-human trial for a new molecular entity, we were able to determine the mechanism of dichotomized variability in plasma drug concentrations, which appeared closely related to adverse drug reactions (ADRs) through integrated omics analysis. The pharmacogenomics screening was performed from whole blood samples using the Affymetrix DMET (Drug-Metabolizing Enzymes and Transporters) Plus microarray, and confirmation of genetic variants was performed using real-time polymerase chain reaction. Metabolomics profiling was performed from plasma samples using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. A GSTM1 null polymorphism was identified in pharmacogenomics test and the drug concentrations was higher in GSTM1 null subjects than GSTM1 functional subjects. The apparent drug clearance was 13-fold lower in GSTM1 null subjects than GSTM1 functional subjects (p < 0.001). By metabolomics analysis, we identified that the study drug was metabolized by cysteinylglycine conjugation in GSTM functional subjects but those not in GSTM1 null subjects. The incidence rate and the severity of ADRs were higher in the GSTM1 null subjects than the GSTM1 functional subjects. Through the integrated omics analysis, we could understand the mechanism of inter-individual variability in drug exposure and in adverse response. In conclusion, integrated multi-omics analysis can be useful for elucidating the various characteristics of new drug candidates in early phase clinical trials.

Exposure Assessment of Biological Monitoring by Urinary Bromide Ion in Methyl Bromide Fumigation Workers (메틸브로마이드 훈증제 작업자의 요 중 브로마이드 이온을 이용한 생물학적 노출평가)

  • Seo, Jeong-Wook;Kim, Byoung-Gwon;Kim, Yu-mi;Lee, Se-Young;Kim, Na-Young;Lim, Hyoun-Ju;Gu, Dongchul;Hong, Young-Seoub
    • Journal of Environmental Health Sciences
    • /
    • v.45 no.6
    • /
    • pp.675-687
    • /
    • 2019
  • Objective: Methyl bromide (MB) fumigant has been shown to be fatal to human when was exposed. However, it were still used the significant amount in quarantine disinfection sites. The purposes of this study were to assess the MB exposure status and characteristics by fumigation-related workers and to provide supporting data for management plan. Methods: For this study, the three groups related to fumigation work were composed. A total of 107 workers were directly exposed, 20 field inspectors were indirect, and 20 general quarantines were not exposed. The urinary bromide ion concentrations in each group were analyzed by using HPLC/ICP-MS, and the working characteristics were identified using the structured questionnaire. Results: The urinary bromide ion concentration in the exposed group of fumigation workers was higher than the indirect and non-exposed groups. In the work characteristics of workers, there was a significant tendency to increase urinary bromide ion concentrations with higher fumigation work years (≤4 years: 2.84 (1.13-7.11) mg/g cr, >4-15 years: 5.36 (4.37-6.57) mg/g cr, >15-37 years: 6.69 (5.27-8.49) mg/g cr, p=0.034). In the comparison of the average number of working days per month, the more working days, the higher the urinary bromide ion concentration was statistically significant (≤12.5 days: 2.59 (1.19-5.65) mg/g cr, >12.5-19.25 days: 5.46 (4.62-6.44) mg/g cr, >19.25-27.25 days: 7.93 (5.93-10.59) mg/g cr, p=0.002). Conclusion: This study was the first nationwide survey including biological monitoring in workers exposed to methyl bromide. The results of this study were expected to be used as a reference for workers' health rights in relation to fumigation, prevention of addiction accidents, and safe management plan.