Browse > Article

Characterization of D-Glucose ${\alpha}$-1-Phosphate Uridylyltransferase (VldB) and Glucokinase (VIdC) Involved in Validamycin Biosynthesis of Streptomyces hygroscopicus var. limoneus KCCM 11405  

Seo Myung-Ji (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI))
Im Eun-Mi (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI))
Singh Deepak (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University)
Rajkarnikar Arishma (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University)
Kwon Hyung-Jin (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University)
Hyun Chang-Gu (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI))
Suh Joo-Won (Department of Biological Science, Institute of Bioscience and Biotechnology, Myongji University)
Pyun Yu-Ryang (Department of Biotechnology, Yonsei University)
Kim Soon-Ok (Division of Bio.New Drug Development, Central Research Institute, Chem Tech Research Incorporation (C-TRI))
Publication Information
Journal of Microbiology and Biotechnology / v.16, no.8, 2006 , pp. 1311-1315 More about this Journal
Abstract
Aminocyclitol antibiotic validamycin A, a prime control agent for sheath blight disease of rice plants, is biosynthesized by Streptomyces hygroscopicus var. limoneus. Within the validamycin biosynthetic gene cluster, vldBC forms an operon of vldABC with vidA, the gene encoding 2-epi-5-epi-valiolone synthase. Biochemical studies, employing the recombinant proteins from Escherichia coli, established VldB and VldC as D-glucose $\alpha$-1-phosphate uridylyltransferase and glucokinase, respectively. This finding substantiates that the validamycin biosynthetic gene cluster harbors genes encoding the enzymes for UDP-glucose formation from glucose. Therefore, we propose that validamycin biosynthesis employs its own catalysts to generate UDP-glucose, but not depending on the primary metabolism.
Keywords
Glucokinase; D-glucose ${\alpha}$-1-phosphate uridylyltransferase; Streptomyces hygroscopicus; validamycin biosynthesis;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Andreone, T. L., R. L. Printz, S. J. Plikis, M. A. Magnuson, and D. K. Granner. 1989. The amino acid sequence of rat liver glucokinase deduced from cloned cDNA. J. BioI. Chem. 264: 363-369
2 Brown, K., F. Pompeo, D. Dixon, D. Mengin-Lecreulx, C. Cambillau, and Y. Bourne. 1999. Crystal structure of the bifunctional N-acetylglucosamine 1-phosphate uridyltransferase from Escherichia coli: A paradigm for the related pyrophosphorylase superfamily. EMBO J. 18: 4906-4107
3 Singh, D., M.-J. Seo, H.-J. Kwon, A. Rajkamikar, K.-R. Kim, S.-O. Kim, and J.- W. Suh. 2005. Genetic localization and heterologous expression of validamycin biosynthetic gene cluster isolated from Streptomyces hygroscopicus var. limoneus KCCM 11405 (IFO 12704). Gene (in press)
4 Suami, T., S. Ogawa, and N. Chida. 1980. The revised structure ofvalidamycin A. J. Antibiot. 33: 98-99   DOI
5 Iwasa, T., H. Yamamoto, and M. Shibata. 1970. Studies on validamycins, new antibiotics. I. Streptomyces hygroscopicus var. limoneus nov. var., validamycin-producing organism. J. Antibiot. 23: 595-602   DOI
6 Robson, G. D., P. J. Kuhn, and A. P. Trinci. 1988. Effects of validamycin A on the morphology, growth and sporulation of Rhizoctonia cerealis, Fusarium culmorum and other fungi. J. Gen. Microbiol. 134: 3187-3194
7 Dong, H., T. Mahmud, I. Tornus, S. Lee, and H. G. Floss. 2001. Biosynthesis of the validamycins: Identification of intermediates in the biosynthesis of validamycin A by Streptomyces hygroscopicus var. limoneus. J. Am. Chem. Soc. 123: 2733-2742   DOI   ScienceOn
8 Gonzali, S., L. Pistelli, L. De Bellis, and A. Alpi. 2001. Characterization of two Arabidopsis thaliana fructokinases. Plant Sci. 160: 1107-1114   DOI   ScienceOn
9 Lee, H.-C., J.-K. Sohng, H.-J. Kim, D.-H. Nam, C.-N. Seong, J.-M. Han, and J.-C. Yoo. 2004. Cloning, expression, and biochemical characterization of dTDP-glucose 4,6-dehydratase gene (gerE) from Streptomyces sp. GERI-155. J. Microbiol. Biotechnol. 14: 576-583
10 Jo, Y.-Y.; J. Liu, Y.-Y. Jin, Y.-Y. Yang, and J.-W. Suh. 2005. Isolation and characterization of kasugamycin biosynthetic genes from Streptomyces kasugaensis KACC 20262. J. Microbiol. Biotechnol. 15: 491-496   과학기술학회마을
11 Heppel, L. A., D. R. Harkness, and R. J. Hilmoe. 1962. A study of substrate specificity and other properties of the alkaline phosphatase of Escherichia coli. J. Biol. Chem. 237: 841-846
12 Nioh, T. and S. Mizushima. 1974. Effect of validamycin on the growth and morphology of Pellicularia saskii. J. Gen. Appl. Microbiol. 20: 373-383   DOI
13 Beyer, S., G. Mayer, and W. Piepersberg. 1998. The StrQ protein encoded in the gene cluster for 5'-hydroxystreptomycin of Streptomyces glaucescens GLA.0 is a $\alpha$-$_D$-glucose-1-phosphate cytidylyltransferase (CDP-$_D$-glucose synthase). Eur. J. Biochem. 258: 1059-1067   DOI   ScienceOn
14 Hansen, T., B. Reichstein, R. Schmid, and P. Schonheit, 2002. The first archaeI ATP-dependent glucokinase, from the hyperthermophilic crenarchaeon Aeropyrum pernix, represents a monomeric, extremely thermophilic ROK glucokinase with broad hexose specificity. J. Bacteriol. 184: 5955-5965   DOI
15 Hansen, T. and P. Schonheit, 2003. ATP-dependent glucokinase from hyperthermophilic bacterium Thermotoga maritima represents an extremely thermophilic ROK glucokinase with high substrate specificity. FEMS Microbiol. Lett. 226: 405-411   DOI   ScienceOn
16 Jo, Y.-Y., S.-H. Kim, Y.-Y. Yang, C.-M. Kang, J.-K. Sohng, and J.-W. Suh. 2003. Functional analysis of spectinomycin biosynthetic genes from Streptomyces spectabilis ATCC 27741. J. Microbiol. Biotechnol. 13: 906-911
17 Horii, S., Y. Kameda, and K. Kawahara. 1972. Studies on validamycins, new antibiotics. VIII. Isolation and characterization of validamycins C, D, E and F. J. Antibiot. 25: 48-53   DOI
18 Asano, N., T. Yamaguchi, Y. Kameda, and K. Matsui. 1987. Effect of validamycins on glycohydrolases of Rhizoctonia solani. J. Antibiot. 40: 526-532   DOI
19 Yu, Y., L. Bai, K. Minagawa, X. Jian, L. Li, J. Li, S. Chen, E. Cao, T. Mahmud, H. G. Floss, X. Zhou, and Z. Deng. 2005. Gene cluster responsible for validamycin biosynthesis in Streptomyces hygroscopicus subsp. jinggangensis 5008. Appl. Environ. Microbiol. 71: 5066-5076   DOI   ScienceOn
20 Meyer, D., C. Schneider-Fresenius, R. Horlacher, R. Peist, and W. Boss. 1997. Molecular characterization of glucokinase from Escherichia coli K-12. J. Bacteriol. 179: 1298-1306   DOI
21 Kameda, Y., N. Asano, T. Yamaguchi, and K. Matsui. 1986. Validamycin G and validoxylamine G, new members of the validamycins. J. Antibiot. 39: 1491-1494   DOI
22 Goward, C. R., R. Hartwell, T. Atkinson, and M. D. Scawen. 1986. The purification and characterization of glucokinase from the thermophile Bacillus stearothermophilus. Biochem. J. 237: 415-420   DOI
23 Zhao, X.-Q., K.-R. Kim, L.-W. Sang, S.-H. Kang, Y.-Y. Yang, and J.- W. Suh. 2005. Genetic organization of a 50-kb gene cluster isolated from Streptomyces kanamyceticus for kanamycin biosynthesis and characterization of kanamycin acetyltransferase. J. Microbiol. Biotechnol. 15: 346-353   과학기술학회마을