The blooming of social media has simulated interest in sentiment analysis. Sentiment analysis aims to determine from a specific piece of content the overall attitude of its author in relation to a specific item, product, brand, or service. In sentiment analysis, the focus is on the subjective sentences. Hence, in order to discover and extract the subjective information from a given text, researchers have applied various methods in computational linguistics, natural language processing, and text analysis. The aim of this paper is to provide an in-depth up-to-date study of the sentiment analysis algorithms in order to familiarize with other works done in the subject. The paper focuses on the main tasks and applications of sentiment analysis. State-of-the-art algorithms, methodologies and techniques have been categorized and summarized to facilitate future research in this field.
Sentiment analysis is a method used to comprehend feelings, opinions, and attitudes in text, and it is essential for evaluating consumer feedback and social media posts. However, creating sentiment dictionaries, which are necessary for this analysis, is complex and time-consuming because people express their emotions differently depending on the context and domain. In this study, we propose a new method for simplifying this procedure. We utilize syntax analysis of the Korean language to identify and extract sentiment words based on the Reason-Sentiment Pattern, which distinguishes between words expressing feelings and words explaining why those feelings are expressed, making it applicable in various contexts and domains. We also define sentiment words as those with clear polarity, even when used independently and exclude words whose polarity varies with context and domain. This approach enables the extraction of explicit sentiment expressions, enhancing the accuracy of sentiment analysis at the attribute level. Our methodology, validated using Korean cosmetics review datasets from Korean online shopping malls, demonstrates how a sentiment dictionary focused solely on clear polarity words can provide valuable insights for product planners. Understanding the polarity and reasons behind specific attributes enables improvement of product weaknesses and emphasis on strengths. This approach not only reduces dependency on extensive sentiment dictionaries but also offers high accuracy and applicability across various domains.
Journal of Advanced Marine Engineering and Technology
/
제37권3호
/
pp.291-299
/
2013
Most sentiment analysis systems count the number of occurrences of sentiment expressions in a text, and evaluate the text by summing polarity values of extracted sentiment expressions. However, linguistic contexts of the expressions should be taken into account in order to analyze sentimental orientation of the text meticulously. Korean auxiliary predicates affect meaning of the main verb or adjective in some ways while attached to it in their usage. In this paper, we introduce a new approach that handles Korean auxiliary predicates in the light of sentiment analysis. We classify the auxiliary predicates according to their strength of impact on sentiment polarity values. We also define compositional rules of auxiliary predicates to update polarity values when the predicates appear along with sentiment expressions. This approach is implemented to a sentiment analysis system to extract opinions about a specific individual from review documents which were collected from various web sites. An experimental result shows approximately 72.6% precision and 52.7% recall for correctly detecting sentiment expressions from a text.
International Journal of Internet, Broadcasting and Communication
/
제15권2호
/
pp.112-117
/
2023
This study aims to find out what tourists' interests and perceptions are like through online big data. Big data for a total of five years from 2018 to 2022 were collected using the Textom program. Sentiment analysis was performed with the collected data. Sentiment analysis expresses the necessity and emotions of city tours in online reviews written by tourists using city tours. The purpose of this study is to extract and analyze keywords representing satisfaction. The sentiment analysis program provided by the big data analysis platform "TEXTOM" was used to study positives and negatives based on sentiment analysis of tourists' online reviews. Sentiment analysis was conducted by collecting reviews related to the city tour. The degree of positive and negative emotions for the city tour was investigated and what emotional words were analyzed for each item. As a result of big data sentiment analysis to examine the emotions and sentiments of tourists about the city tour, 93.8% positive and 6.2% negative, indicating that more than half of the tourists are positively aware. This paper collects tourists' opinions based on the analyzed sentiment analysis, understands the quality characteristics of city tours based on the analysis using the collected data, and sentiment analysis provides important information to the city tour platform for each region.
Purpose This study quantified companies' views on the COVID-19 pandemic with sentiment analysis of U.S. public companies' disclosures. It aims to provide timely insights to shareholders, investors, and consumers by analyzing and visualizing sentiment changes over time as well as similarities and differences by industry. Design/methodology/approach From more than fifty thousand Form 10-K and Form 10-Q published between 2020 and 2021, we extracted over one million texts related to the COVID-19 pandemic. Using the FinBERT language model fine-tuned in the finance domain, we conducted sentiment analysis of the texts, and we quantified and classified the data into positive, negative, and neutral. In addition, we illustrated the analysis results using various visualization techniques for easy understanding of information. Findings The analysis results indicated that U.S. public companies' overall sentiment changed over time as the COVID-19 pandemic progressed. Positive sentiment gradually increased, and negative sentiment tended to decrease over time, but there was no trend in neutral sentiment. When comparing sentiment by industry, the pattern of changes in the amount of positive and negative sentiment and time-series changes were similar in all industries, but differences among industries were shown in neutral sentiment.
International Journal of Computer Science & Network Security
/
제24권9호
/
pp.12-20
/
2024
Sentiment analysis has become a pivotal component in understanding public opinion, market trends, and user experiences across various domains. The advent of GPT (Generative Pre-trained Transformer) models has revolutionized the landscape of natural language processing, introducing a new dimension to sentiment analysis. This comprehensive roadmap delves into the transformative impact of GPT models on sentiment analysis tasks, contrasting them with conventional methodologies. With an increasing need for nuanced and context-aware sentiment analysis, this study explores how GPT models, known for their ability to understand and generate human-like text, outperform traditional methods in capturing subtleties of sentiment expression. We scrutinize various case studies and benchmarks, highlighting GPT models' prowess in handling context, sarcasm, and idiomatic expressions. This roadmap not only underscores the superior performance of GPT models but also discusses challenges and future directions in this dynamic field, offering valuable insights for researchers, practitioners, and AI enthusiasts. The in-depth analysis provided in this paper serves as a testament to the transformational potential of GPT models in the realm of sentiment analysis.
소셜 웹이 확산되면서 오피니언 마이닝 혹은 감성 분석 연구가 주목을 받고 있다. 감성 분석을 위해서는 감성을 판별하기 위한 감성자원이 제공되어야 한다. 기존 감성 분석에서는 감성의 극성에 대한 강도를 표현하는 방법으로 리소스를 구축하고 이를 통하여 의견의 극성을 결정하였다. 본 논문에서는 의견의 극성뿐만 아니라 긍/부정의 근거가 되는 감성의 카테고리를 구성하고자 한다. 본 논문에서는 합리적인 분류를 위하여 심리학적 감정들을 초기 감성으로 정의한다. 그리고 실제로 소셜 웹에서 사용되는 감성의 분포를 얻기 위하여 소셜 웹의 텍스트를 분석하여 감성 정보를 추출한다. 추출한 감성 정보를 이용하여 초기 감성들을 재분류함으로써 소셜 웹을 위한 감성 카테고리를 구성한다. 본 논문에서는 이 방법을 통하여 23개의 감성 카테고리를 제시한다.
This paper presents a novel approach to automatically generate Korean multiword sentiment expressions by using a seed sentiment lexicon and a large-scale domain-specific corpus. A multiword sentiment expression consists of a seed sentiment word and its contextual words occurring adjacent to the seed word. The multiword sentiment expressions that are the focus of our study have a different polarity from that of the seed sentiment word. The automatically extracted multiword sentiment expressions show that 1) the contextual words should be defined as a part of a multiword sentiment expression in addition to their corresponding seed sentiment word, 2) the identified multiword sentiment expressions contain various indicators for polarity shift that have rarely been recognized before, and 3) the newly recognized shifters contribute to assigning a more accurate polarity value. The empirical result shows that the proposed approach achieves improved performance of the sentiment analysis system that uses an automatically generated lexicon.
본 연구는 보다 정확한 텍스트의 감성 분석을 위해 새로운 감성 특징인 감성 패턴을 제안하고, 이를 이용한 영화평 평점 추론에 대해 소개한다. 텍스트 감성 분석은 텍스트에 포함된 감성인 긍정과 부정을 인식하고 분류하는 작업으로, 이를 위해 감성 특징인 감성 단어와 구문 패턴을 이용한다. 텍스트 내에 존재하는 감성 단어와 구문 패턴의 감성을 통해 텍스트 전체의 감성을 분류하는 것이다. 하지만, 기존 감성 분석은 감성 단어와 구문 패턴의 감성을 독립적으로 고려하기 때문에 문장 혹은 글 전체의 감성 정보를 정확히 파악하기 어렵다는 한계를 가지고 있다. 그러므로 본 연구는 기존 감성 특징들을 독립적으로 고려하는 것뿐만 아니라 문장 내에서 출현하는 감성들을 의미적으로 연결하여 하나의 패턴으로 정의한 감성 패턴을 제안하고, 감성 분석의 세부 연구 주제인 평점 추론에 감성 패턴을 새로운 감성 특징으로 사용하였다. 제안하는 감성 패턴의 효과를 검증하기 위해 영화평에 대한 평점 추론 실험을 수행하였다. 감성 패턴을 포함한 모든 감성 특징들을 사전에 정의한 학습 영화평들로부터 추출하고, 이를 확률 기법을 이용해 실험 영화평들의 평점을 추론하였다. 그 결과 감성 패턴을 사용하였을 경우 기존 감성 특징들만 사용했을 때 보다 추론한 평점이 더욱 정확함을 확인하였다.
KSII Transactions on Internet and Information Systems (TIIS)
/
제12권8호
/
pp.4090-4102
/
2018
After emerging online communications, text mining and sentiment analysis has been frequently applied into analyzing electronic word-of-mouth. This study aims to develop a domain-specific lexicon of sentiment analysis to predict box office success in Korea film market and validate the feasibility of the lexicon. Natural language processing, a machine learning algorithm, and a lexicon-based sentiment classification method are employed. To create a movie domain sentiment lexicon, 233,631 reviews of 147 movies with popularity ratings is collected by a XML crawling package in R program. We accomplished 81.69% accuracy in sentiment classification by the Korean sentiment dictionary including 706 negative words and 617 positive words. The result showed a stronger positive relationship with box office success and consumers' sentiment as well as a significant positive effect in the linear regression for the predicting model. In addition, it reveals emotion in the user-generated content can be a more accurate clue to predict business success.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.