• 제목/요약/키워드: Sentiment-Analysis

검색결과 694건 처리시간 0.029초

Sentiment Analysis Main Tasks and Applications: A Survey

  • Tedmori, Sara;Awajan, Arafat
    • Journal of Information Processing Systems
    • /
    • 제15권3호
    • /
    • pp.500-519
    • /
    • 2019
  • The blooming of social media has simulated interest in sentiment analysis. Sentiment analysis aims to determine from a specific piece of content the overall attitude of its author in relation to a specific item, product, brand, or service. In sentiment analysis, the focus is on the subjective sentences. Hence, in order to discover and extract the subjective information from a given text, researchers have applied various methods in computational linguistics, natural language processing, and text analysis. The aim of this paper is to provide an in-depth up-to-date study of the sentiment analysis algorithms in order to familiarize with other works done in the subject. The paper focuses on the main tasks and applications of sentiment analysis. State-of-the-art algorithms, methodologies and techniques have been categorized and summarized to facilitate future research in this field.

한국어 구문분석을 활용한 이유-감성 패턴 기반의 감성사전 구축 (Sentiment Dictionary Construction Based on Reason-Sentiment Pattern Using Korean Syntax Analysis)

  • 김우현;이희정
    • 산업경영시스템학회지
    • /
    • 제46권4호
    • /
    • pp.142-151
    • /
    • 2023
  • Sentiment analysis is a method used to comprehend feelings, opinions, and attitudes in text, and it is essential for evaluating consumer feedback and social media posts. However, creating sentiment dictionaries, which are necessary for this analysis, is complex and time-consuming because people express their emotions differently depending on the context and domain. In this study, we propose a new method for simplifying this procedure. We utilize syntax analysis of the Korean language to identify and extract sentiment words based on the Reason-Sentiment Pattern, which distinguishes between words expressing feelings and words explaining why those feelings are expressed, making it applicable in various contexts and domains. We also define sentiment words as those with clear polarity, even when used independently and exclude words whose polarity varies with context and domain. This approach enables the extraction of explicit sentiment expressions, enhancing the accuracy of sentiment analysis at the attribute level. Our methodology, validated using Korean cosmetics review datasets from Korean online shopping malls, demonstrates how a sentiment dictionary focused solely on clear polarity words can provide valuable insights for product planners. Understanding the polarity and reasons behind specific attributes enables improvement of product weaknesses and emphasis on strengths. This approach not only reduces dependency on extensive sentiment dictionaries but also offers high accuracy and applicability across various domains.

Compositional rules of Korean auxiliary predicates for sentiment analysis

  • Lee, Kong Joo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제37권3호
    • /
    • pp.291-299
    • /
    • 2013
  • Most sentiment analysis systems count the number of occurrences of sentiment expressions in a text, and evaluate the text by summing polarity values of extracted sentiment expressions. However, linguistic contexts of the expressions should be taken into account in order to analyze sentimental orientation of the text meticulously. Korean auxiliary predicates affect meaning of the main verb or adjective in some ways while attached to it in their usage. In this paper, we introduce a new approach that handles Korean auxiliary predicates in the light of sentiment analysis. We classify the auxiliary predicates according to their strength of impact on sentiment polarity values. We also define compositional rules of auxiliary predicates to update polarity values when the predicates appear along with sentiment expressions. This approach is implemented to a sentiment analysis system to extract opinions about a specific individual from review documents which were collected from various web sites. An experimental result shows approximately 72.6% precision and 52.7% recall for correctly detecting sentiment expressions from a text.

A Study on the Sentiment Analysis of City Tour Using Big Data

  • Se-won Jeon;Gi-Hwan Ryu
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제15권2호
    • /
    • pp.112-117
    • /
    • 2023
  • This study aims to find out what tourists' interests and perceptions are like through online big data. Big data for a total of five years from 2018 to 2022 were collected using the Textom program. Sentiment analysis was performed with the collected data. Sentiment analysis expresses the necessity and emotions of city tours in online reviews written by tourists using city tours. The purpose of this study is to extract and analyze keywords representing satisfaction. The sentiment analysis program provided by the big data analysis platform "TEXTOM" was used to study positives and negatives based on sentiment analysis of tourists' online reviews. Sentiment analysis was conducted by collecting reviews related to the city tour. The degree of positive and negative emotions for the city tour was investigated and what emotional words were analyzed for each item. As a result of big data sentiment analysis to examine the emotions and sentiments of tourists about the city tour, 93.8% positive and 6.2% negative, indicating that more than half of the tourists are positively aware. This paper collects tourists' opinions based on the analyzed sentiment analysis, understands the quality characteristics of city tours based on the analysis using the collected data, and sentiment analysis provides important information to the city tour platform for each region.

BERT를 활용한 미국 기업 공시에 대한 감성 분석 및 시각화 (Sentiment Analysis and Data Visualization of U.S. Public Companies' Disclosures using BERT)

  • 김효곤;유동희
    • 한국정보시스템학회지:정보시스템연구
    • /
    • 제31권3호
    • /
    • pp.67-87
    • /
    • 2022
  • Purpose This study quantified companies' views on the COVID-19 pandemic with sentiment analysis of U.S. public companies' disclosures. It aims to provide timely insights to shareholders, investors, and consumers by analyzing and visualizing sentiment changes over time as well as similarities and differences by industry. Design/methodology/approach From more than fifty thousand Form 10-K and Form 10-Q published between 2020 and 2021, we extracted over one million texts related to the COVID-19 pandemic. Using the FinBERT language model fine-tuned in the finance domain, we conducted sentiment analysis of the texts, and we quantified and classified the data into positive, negative, and neutral. In addition, we illustrated the analysis results using various visualization techniques for easy understanding of information. Findings The analysis results indicated that U.S. public companies' overall sentiment changed over time as the COVID-19 pandemic progressed. Positive sentiment gradually increased, and negative sentiment tended to decrease over time, but there was no trend in neutral sentiment. When comparing sentiment by industry, the pattern of changes in the amount of positive and negative sentiment and time-series changes were similar in all industries, but differences among industries were shown in neutral sentiment.

The Role of GPT Models in Sentiment Analysis Tasks

  • Mashael M. Alsulami
    • International Journal of Computer Science & Network Security
    • /
    • 제24권9호
    • /
    • pp.12-20
    • /
    • 2024
  • Sentiment analysis has become a pivotal component in understanding public opinion, market trends, and user experiences across various domains. The advent of GPT (Generative Pre-trained Transformer) models has revolutionized the landscape of natural language processing, introducing a new dimension to sentiment analysis. This comprehensive roadmap delves into the transformative impact of GPT models on sentiment analysis tasks, contrasting them with conventional methodologies. With an increasing need for nuanced and context-aware sentiment analysis, this study explores how GPT models, known for their ability to understand and generate human-like text, outperform traditional methods in capturing subtleties of sentiment expression. We scrutinize various case studies and benchmarks, highlighting GPT models' prowess in handling context, sarcasm, and idiomatic expressions. This roadmap not only underscores the superior performance of GPT models but also discusses challenges and future directions in this dynamic field, offering valuable insights for researchers, practitioners, and AI enthusiasts. The in-depth analysis provided in this paper serves as a testament to the transformational potential of GPT models in the realm of sentiment analysis.

심리학적 감정과 소셜 웹 자료를 이용한 감성의 실증적 분류 (Empirical Sentiment Classification Using Psychological Emotions and Social Web Data)

  • 장문수
    • 한국지능시스템학회논문지
    • /
    • 제22권5호
    • /
    • pp.563-569
    • /
    • 2012
  • 소셜 웹이 확산되면서 오피니언 마이닝 혹은 감성 분석 연구가 주목을 받고 있다. 감성 분석을 위해서는 감성을 판별하기 위한 감성자원이 제공되어야 한다. 기존 감성 분석에서는 감성의 극성에 대한 강도를 표현하는 방법으로 리소스를 구축하고 이를 통하여 의견의 극성을 결정하였다. 본 논문에서는 의견의 극성뿐만 아니라 긍/부정의 근거가 되는 감성의 카테고리를 구성하고자 한다. 본 논문에서는 합리적인 분류를 위하여 심리학적 감정들을 초기 감성으로 정의한다. 그리고 실제로 소셜 웹에서 사용되는 감성의 분포를 얻기 위하여 소셜 웹의 텍스트를 분석하여 감성 정보를 추출한다. 추출한 감성 정보를 이용하여 초기 감성들을 재분류함으로써 소셜 웹을 위한 감성 카테고리를 구성한다. 본 논문에서는 이 방법을 통하여 23개의 감성 카테고리를 제시한다.

Extracting Multiword Sentiment Expressions by Using a Domain-Specific Corpus and a Seed Lexicon

  • Lee, Kong-Joo;Kim, Jee-Eun;Yun, Bo-Hyun
    • ETRI Journal
    • /
    • 제35권5호
    • /
    • pp.838-848
    • /
    • 2013
  • This paper presents a novel approach to automatically generate Korean multiword sentiment expressions by using a seed sentiment lexicon and a large-scale domain-specific corpus. A multiword sentiment expression consists of a seed sentiment word and its contextual words occurring adjacent to the seed word. The multiword sentiment expressions that are the focus of our study have a different polarity from that of the seed sentiment word. The automatically extracted multiword sentiment expressions show that 1) the contextual words should be defined as a part of a multiword sentiment expression in addition to their corresponding seed sentiment word, 2) the identified multiword sentiment expressions contain various indicators for polarity shift that have rarely been recognized before, and 3) the newly recognized shifters contribute to assigning a more accurate polarity value. The empirical result shows that the proposed approach achieves improved performance of the sentiment analysis system that uses an automatically generated lexicon.

감성 패턴을 이용한 영화평 평점 추론 (A Rating Inference of Movie Reviews Using Sentiment Patterns)

  • 김정호;인주호;채수환
    • 감성과학
    • /
    • 제17권1호
    • /
    • pp.71-78
    • /
    • 2014
  • 본 연구는 보다 정확한 텍스트의 감성 분석을 위해 새로운 감성 특징인 감성 패턴을 제안하고, 이를 이용한 영화평 평점 추론에 대해 소개한다. 텍스트 감성 분석은 텍스트에 포함된 감성인 긍정과 부정을 인식하고 분류하는 작업으로, 이를 위해 감성 특징인 감성 단어와 구문 패턴을 이용한다. 텍스트 내에 존재하는 감성 단어와 구문 패턴의 감성을 통해 텍스트 전체의 감성을 분류하는 것이다. 하지만, 기존 감성 분석은 감성 단어와 구문 패턴의 감성을 독립적으로 고려하기 때문에 문장 혹은 글 전체의 감성 정보를 정확히 파악하기 어렵다는 한계를 가지고 있다. 그러므로 본 연구는 기존 감성 특징들을 독립적으로 고려하는 것뿐만 아니라 문장 내에서 출현하는 감성들을 의미적으로 연결하여 하나의 패턴으로 정의한 감성 패턴을 제안하고, 감성 분석의 세부 연구 주제인 평점 추론에 감성 패턴을 새로운 감성 특징으로 사용하였다. 제안하는 감성 패턴의 효과를 검증하기 위해 영화평에 대한 평점 추론 실험을 수행하였다. 감성 패턴을 포함한 모든 감성 특징들을 사전에 정의한 학습 영화평들로부터 추출하고, 이를 확률 기법을 이용해 실험 영화평들의 평점을 추론하였다. 그 결과 감성 패턴을 사용하였을 경우 기존 감성 특징들만 사용했을 때 보다 추론한 평점이 더욱 정확함을 확인하였다.

Text Mining and Sentiment Analysis for Predicting Box Office Success

  • Kim, Yoosin;Kang, Mingon;Jeong, Seung Ryul
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권8호
    • /
    • pp.4090-4102
    • /
    • 2018
  • After emerging online communications, text mining and sentiment analysis has been frequently applied into analyzing electronic word-of-mouth. This study aims to develop a domain-specific lexicon of sentiment analysis to predict box office success in Korea film market and validate the feasibility of the lexicon. Natural language processing, a machine learning algorithm, and a lexicon-based sentiment classification method are employed. To create a movie domain sentiment lexicon, 233,631 reviews of 147 movies with popularity ratings is collected by a XML crawling package in R program. We accomplished 81.69% accuracy in sentiment classification by the Korean sentiment dictionary including 706 negative words and 617 positive words. The result showed a stronger positive relationship with box office success and consumers' sentiment as well as a significant positive effect in the linear regression for the predicting model. In addition, it reveals emotion in the user-generated content can be a more accurate clue to predict business success.