• 제목/요약/키워드: Sensorless drives

검색결과 151건 처리시간 0.024초

퍼지 PI제어기를 이용한 유도전동기 속도 센서리스 벡터제어 (Sensorless Vector Control of Induction Motor Using Fuzzy PI Controller)

  • 남상현;이재환;김대균;김길동;이승환;한경희
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.390-393
    • /
    • 1999
  • For high performance ac drives, the speed sensorless vector control and a speed control algorithm base on the Fuzzy PI controller have received increasing attention. A Fuzzy PI controller is used for robust and fast speed control and space vector modulation method is used for PWM wave generation in this proposed system. The computer simulation results show that the proposed controller are more excellent control characteristics than conventional PI controller in transient-state response.

  • PDF

Implementation of Speed Sensorless Induction Motor drives by Fast Learning Neural Network using RLS Approach

  • Kim, Yoon-Ho;Kook, Yoon-Sang
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1998년도 Proceedings ICPE 98 1998 International Conference on Power Electronics
    • /
    • pp.293-297
    • /
    • 1998
  • This paper presents a newly developed speed sensorless drive using RLS based on Neural Network Training Algorithm. The proposed algorithm has just the time-varying learning rate, while the wellknown back-propagation algorithm based on gradient descent has a constant learning rate. The number of iterations required by the new algorithm to converge is less than that of the back-propagation algorithm. The theoretical analysis and experimental results to verify the effectiveness of the proposed control strategy are described.

  • PDF

PMSM 적응 센서리스 제어기의 속도/위치 추정기의 특성 분석 (Analysis of characteristics of position/speed estimator of an adaptive sensorless controller for PMSM)

  • 이진우
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2015년도 전력전자학술대회 논문집
    • /
    • pp.503-504
    • /
    • 2015
  • This paper deals with the analysis of characteristics of position and speed estimator of an adaptive sensorless control algorithm for PMSM drives. The analysis shows that the back emf constant variation results in the position estimation error, but does not the speed estimation error. The simulation and experimental results are shown to verify the analysis result and the usefulness of the back emf constant estimator.

  • PDF

Pulse Counting Sensorless Detection of the Shaft Speed and Position of DC Motor Based Electromechanical Actuators

  • Testa, Antonio;De Caro, Salvatore;Scimone, Tommaso;Letor, Romeo
    • Journal of Power Electronics
    • /
    • 제14권5호
    • /
    • pp.957-966
    • /
    • 2014
  • Some of DC actuators used in home automation, office automation, medical equipment and automotive systems require a position sensor. In low power applications, the introduction of such a transducer remarkably increases the whole system cost, which justifies the development of sensorless position estimation techniques. The well-known AC motor drive sensorless techniques exploiting the fundamental component of the back electromotive force cannot be used on DC motor drives. In addition, the sophisticated approaches based on current or voltage signal injection cannot be used. Therefore, an effective and inexpensive sensorless position estimation technique suitable for DC motors is presented in this paper. This technique exploits the periodic pulses of the armature current caused by commutation. It is based on a simple pulse counting algorithm, suitable for coping with the rather large variability of the pulse frequency and it leads to the realization of a sensorless position control system for low cost, medium performance systems, like those in the field of automotive applications.

칼만필터 학습 신경회로망을 이용한 고속 유도전동기의 센서리스 제어 (Sensorless Vector of High Speed Motor Drives based on Neural Network Controllers using Kalman Filter Learning Algorithm)

  • 이병순;김윤호
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1999년도 전력전자학술대회 논문집
    • /
    • pp.518-521
    • /
    • 1999
  • This paper describes high speed squirrel cage induction motor drives without speed sensors using neural network based on Kalman filter Learning. High speed motors are receiving inverasing attentions in various applications, because of advantages of high speed, small size and light weight with same power level. Larning rate by Kalman filtering is time varying, convergence time fast, effect of initial weight between neurons is small.

  • PDF

Sensorless Control of the Synchronous Reluctance Machine

  • Kilthau A.;Pacas J. M.
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2001년도 Proceedings ICPE 01 2001 International Conference on Power Electronics
    • /
    • pp.768-772
    • /
    • 2001
  • The paper deals with the control of the synchronous reluctance machine without position sensor. A method for the computation of the transformation angle out of terminal voltages and currents is presented. The injection of test signals allows operation at zero speed. Fundamental for this control scheme is the exact modelling of the machine, where especially the saturable inductances are of central interest. The accuracy of the angle estimation method over the whole operating range including field-weakening is discussed in detail. The implementation of the angle estimation method in a rotor-oriented control scheme and practical results are demonstrated.

  • PDF

확장된 칼만 필터를 이용한 속도 및 검출기가 없는 IPMSM의 최대토크 운전 (Maximum Torque Operation of IPMSM Drives without Speed & Rotor Position Sensors Using An Extended Kalman Filter)

  • 김윤호;윤병도;국윤상
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 1996년도 창립기념 전력전자학술발표회 논문집
    • /
    • pp.21-25
    • /
    • 1996
  • To control the speed of IPMSM drives it is necessary to know the speed and the rotor position. This is normally done by measurement of this values with electromechenical sensors. In this paper, a new approach to the position elimination method for the high performance variable speed IPMSM drives with the current controlled PWM technique is presented. For the high performance drive capability in the speed region, a Extended Kalman filter algorithm is adopted to estimate the rotor position as well as the angular velocity for the practical sensorless IPMSM drives. The high performance drive characteristics of the proposed method are verified using the wide simulation.

  • PDF

A Sensorless Switched Reluctance Drive System Based on the Improved Simplified Flux Method

  • Li, Zhenguo;Song, Andong;Ahn, Jin-Woo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제1권4호
    • /
    • pp.477-482
    • /
    • 2012
  • This paper describes a new rotor position sensorless control method for SRM drives based on an improved simplified flux linkage method. In the traditional simplified flux linkage method, every phases take turns conduction and current chopping control method is used. Every phases take turns conduction means turning on the incoming working phase while turning off the working phase. This conduction mode causes coupling between turn-on and turn-off angles, which goes against optimal efficiency or torque ripple minimization with sensorless speed control. In the improved simplified flux linkage method, turn-off angle is calculated by flux loop, the turn-on angle can be given arbitrarily and has no relations with the turn-off angle, and the current chopping control method is used. The speed and rotor position can be estimated then. Finally, a sensorless SRM speed control system and an experiment platform with DSP are built and validity of this method is confirmed.

직접 토크제어에 의한 위치검출기 없는 유도전동기의 고성능 모션제어 시스템 (A High-Performance Position Sensorless Motion Control System of Induction Motor with Direct Torque Control)

  • 김민회;김남훈;백원식
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제51권7호
    • /
    • pp.399-405
    • /
    • 2002
  • This paper presents an implementation of digital high-performance Position sensorless motion control system of an induction motor drives with Direct Torque Control(DTC). The system consist of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controller, optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. The speed observer is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal. The simulation and experimental results are provided to evacuate the consistency and the performance of the suggested position sensorless control algorithm. The developed position sensorless system are shown a good motion control response characteristic and high performance features using 2.2[kw] general purposed induction motor.

Sensorless Fuzzy Direct Torque Control for High Performance Electric Vehicle with Four In-Wheel Motors

  • Sekour, M'hamed;Hartani, Kada;Draou, Azeddine;Allali, Ahmed
    • Journal of Electrical Engineering and Technology
    • /
    • 제8권3호
    • /
    • pp.530-543
    • /
    • 2013
  • This paper describes a control scheme of speed sensorless fuzzy direct torque control (FDTC) of permanent magnet synchronous motor for electric vehicle (EV). Electric vehicle requires fast torque response and high efficiency of the drive. Speed sensorless FDTC In-wheel PMSM drives without mechanical speed sensors at the motor shaft have the attractions of low cost, quick response and high reliability in electric vehicle application. This paper presents a new approach to estimate the speed of in-wheel electrical vehicles based on Model Reference Adaptive System (MRAS). The direct torque control suffers in low speeds due to the effect of changes in stator resistance on the flux measurements. To improve the system performance at low speeds, a PI-fuzzy resistance estimator is proposed to eliminate the error due to changes in stator resistance. High performance sensorless drive of the in-wheel motor based on MRAS with on line stator resistance tuning is established for four motorized wheels electric vehicle and the whole system is simulated by matalb/simulink. The simulation results show the effectiveness of the new control strategy. This proposed control strategy is extensively used in electric vehicle application.