• Title/Summary/Keyword: Sensorless drives

Search Result 151, Processing Time 0.027 seconds

A High-Performance Position Sensorless Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치검출기 없는 리럭턴스 동기전동기의 고성능 제어시스템)

  • 김민회;김남훈;백원식
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.7 no.1
    • /
    • pp.81-90
    • /
    • 2002
  • This paper presents an Implementation of digital high-performance position sensorless control system of Reluctance Synchronous Motor(RSM) drives with Direct Torque Control(DTC). The system consists of stator flux observer, speed and torque estimator, two digital hysteresis controllers, an optimal switching look-up table, Insulated Gate Bipolar Transistor(IGBT) voltage source inverter, and TMS320C31 DSP board. The stator flux observer Is based on the combined voltage and current model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. In order to prove the suggested sensorless control algorithm for industrial field application, we have some simulation and actual experiment at low and high speed range. The developed high-performance speed control by fully digital system are shown a good response characteristic of control results and high performance features using 1.0[kW] RSM having 2.57 reluctance ratio of $L_d/L_q$.

Seamless Transition Strategy for Wide Speed-Range Sensorless IPMSM Drives with a Virtual Q-axis Inductance

  • Shen, Hanlin;Xu, Jinbang;Yu, Baiqiang;Tang, Qipeng;Chen, Bao;Lou, Chun;Qiao, Yu
    • Journal of Power Electronics
    • /
    • v.19 no.5
    • /
    • pp.1224-1234
    • /
    • 2019
  • Hybrid rotor position estimation methods that integrate a fundamental model and high frequency (HF) signal injection are widely used for the wide speed-range sensorless control of interior permanent-magnet synchronous machines (IPMSMs). However, the direct transition of two different schemes may lead to system fluctuations or system instability since two estimated rotor positions based on two different schemes are always unequal due to the effects of parameter variations, system delays and inverter nonlinearities. In order to avoid these problems, a seamless transition strategy to define and construct a virtual q-axis inductance is proposed in this paper. With the proposed seamless transition strategy, an estimated rotor position based on a fundamental model is forced to track that based on HF signal injection before the transition by adjusting the constructed virtual q-axis inductance. Meanwhile, considering that the virtual q-axis inductance changes with rotor position estimation errors, a new observer with a two-phase phase-locked loop (TP-PLL) is developed to accurately obtain the virtual q-axis inductance online. Furthermore, IPMSM sensorless control with maximum torque per ampere (MTPA) operations can be tracked automatically by selecting the proper virtual q-axis inductance. Finally, experimental results obtained from an IPMSM demonstrate the feasibility of the proposed seamless transition strategy.

A Study of Adaptive Sliding Mode Observer for a Sensorless Drive System of SRM (SRM 센서리스 구동시스템을 위한 적응 슬라이딩 모드 관측기 연구)

  • Oh Ju-Hwan;Lee Jin-Woo;Kwon Byung-Il
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.12
    • /
    • pp.691-699
    • /
    • 2004
  • SRM(Switched Reluctance Motor) drives require the accurate position information of the rotor. These informations are generally provided by a tacho generator or digital shaft-position encoder These speed sensors lower the system reliability and require special attention to noise. This paper describes a new approach to estimating SRM speed from measured terminal voltages and currents for speed sensorless control. The described method is based on the sliding mode observer. The rotor speed and position observers are estimated by the adaptation law using the real and estimated currents. However, the conventional adaptive sliding mode observer based on the variable structure control theory has some disadvantages that the estimated values including the high-frequency chattering and the steady state error generated due to the infinite feedback gain chosen and the discontinuous control input. To reduce the chattering and steady state error, an integrator is also inserted in the sliding mode observer strategy. The described adaptive sliding mode observer decreases the vibration to the switching hyper-plane of the sliding mode by adding integrator. The described methodology incorporates the Lyapunov algorithm to drive the rotor speed and the stator resistance such that it can overcome the problem of sensitivity in the face of SRM parameter variation. Also, without any mechanical information. The rotor speed of SRM is obtained form adaptive scheme. The described method is verified through the simulation and experiment.

A Position Sensorless Motion Control System of Reluctance Synchronous Motor with Direct Torque Control (직접토크제어에 의한 위치센서 없는 리럭턴스 동기전동기의 위치제어 시스템)

  • Kim, Min-Huei;Lee, Bok-Yong;Kim, Kyung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2002.06a
    • /
    • pp.135-141
    • /
    • 2002
  • This paper presents an implementation of high-dynamic performance of position sensorless motion control system of Reluctance Synchronous Motor(RSM) drives for an industrial servo system with direct torque control(DTC), The problems of DTC for high-dynamic performance and maximum efficiency RSM drive due to a saturated stator linkage flux and nonlinear inductance curve with various load currents, The accurate estimation of the stator flux and torque are obtained using stator flux observer of which a saturated inductance Ld and Lq can be compensated by adapting from measurable the modulus and angle of the stator current space vector. To obtain fast torque response and maximum torque/current with varying load current, the reference command flux is ensured by imposing Ids=Iqs. This control strategy is proposed to fast response and optimal efficiency for RSM drive. In order to prove rightness of the suggested control algorithm, the actual experiment carried out at ${\pm}$20 and ${\pm}$1500 rpm. The developed digitally high-performance control system are shown some good response characteristic of control results and high performance features using 1.0kW RSM of which has 2.57 Ld/Lq salient ratio.

  • PDF

Speed and Current Sensor Fault Detection and Isolation Based on Adaptive Observers for IM Drives

  • Yu, Yong;Wang, Ziyuan;Xu, Dianguo;Zhou, Tao;Xu, Rong
    • Journal of Power Electronics
    • /
    • v.14 no.5
    • /
    • pp.967-979
    • /
    • 2014
  • This paper focuses on speed and current sensor fault detection and isolation (FDI) for induction motor (IM) drives. A new, accurate and high-efficiency FDI approach is proposed so that a system can continue operating with good performance even in the presence of speed sensor faults, current sensor faults or both. The proposed three paralleled adaptive observers are capable of current sensor fault detection and localization. By using observers, the rotor flux and rotor speed can be estimated which allows the system to run under the speed sensorless vector control mode when a speed sensor fault occurs. In order to detect speed sensor faults, a threshold-based scheme is proposed. To verify the feasibility and effectiveness of the proposed FDI strategy, experiments are carried out under different conditions based on a dSPACE DS1104 induction motor drive platform.

Sensorless Control of Non-salient Permanent Magnet Synchronous Motor Drives using Rotor Position Tracking PI Controller

  • Lee Jong-Kun;Seok Jul-Ki
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • v.5B no.2
    • /
    • pp.189-195
    • /
    • 2005
  • This paper presents a new velocity estimation strategy for a non-salient permanent magnet synchronous motor drive without high frequency signal injection or special PWM pattern. This approach is based on the d-axis current regulator output voltage of the drive system, which contains the rotor position error information. The rotor velocity can be estimated through a rotor position tracking PI controller that controls the position error at zero. For zero and low speed operation, the PI gain of the rotor position tracking controller has a variable structure according to the estimated rotor velocity. Then, at zero speed, the rotor position and velocity have sluggish dynamics because the varying gains are very low in this region. In order to boost the bandwidth of the PI controller during zero speed, the loop recovery technique is applied to the control system. The PI tuning formulas are also derived by analyzing this control system by frequency domain specifications such as phase margin and bandwidth assignment.

Sensorless Fuzzy Logic Soft Start of Induction Motor With Load Detection

  • Arehpanahi, Mehdi;Monfared, Jafar Mili;Abbaszadeh, Karim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2378-2381
    • /
    • 2003
  • In recent years, fuzzy logic has received greater emphasis in the field of power electronics and motion control by virtue of its adaptive capability. A new fuzzy logic based soft-start scheme for induction motor drives close to load detection has been discussed here using microcontroller based thyristorised voltage controller. Rule based soft-start algorithm is fully realised through a software approach only. The soft-start strategy is based on the change of input impedance during starting period. The prototype has been tested under various loading conditions and found to be reliable.

  • PDF

FFT-Based Position Estimation in Switched Reluctance Motor Drives

  • Ha, Keunsoo;Kim, Jaehyuck;Choi, Jang Young
    • Journal of Magnetics
    • /
    • v.19 no.1
    • /
    • pp.90-100
    • /
    • 2014
  • Position estimation that uses only active phase voltage and current is presented, to perform high accuracy position sensorless control of a SRM drive. By extracting the amplitude of the first switching harmonic terms of phase voltage and current for a PWM period through Fast Fourier Transform (FFT), the flux-linkage and position are estimated without external hardware circuitry, such as a modulator and demodulator, which result in increased cost, as well as large position estimation error, produced when the motional back EMF is ignored near zero speed. A two-phase SRM drive system, consisting of an asymmetrical converter and a conventional closed-loop PI current controller, is utilized to validate the performance of the proposed position estimation scheme in comprehensive operating conditions. It is shown that the estimated values very closely track the actual values, in dynamic simulations and experiments.

Efficiency Optimization Control of SynRM with ANN Speed Estimation (ANN의 속도 추정에 의한 SynRM의 효율 최적화 제어)

  • Choi, Jung-Sik;Ko, Jae-Sub;Chung, Dong-Hwa
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.55 no.3
    • /
    • pp.133-140
    • /
    • 2006
  • This paper is proposed an efficiency optimization control algorithm for a synchronous reluctance motor(SynRM) which minimizes the copper and iron losses. Also, this paper presents a speed estimated control scheme of SynRM using artificial neural network(ANN). There exists a variety of combinations of d and q-axis current which provide a specific motor torque. The objective of the efficiency optimization controller is to seek a combination of d and q-axis current components, which provides minimum losses at a certain operating point in steady state. It is shown that the current components which directly govern the torque production have been very well regulated by the efficiency optimization control scheme. The proposed algorithm allows the electromagnetic losses in variable speed and torque drives to be reduced while keeping good torque control dynamics. The control performance of ANN is evaluated by analysis for various operating conditions. Analysis results are presented to show the validity of the proposed algorithm.

Sensorless Control of PM Synchronous Motor Using Adaptive Observer (적응 관측기를 이용한 영구자석 동기전동기의 센서리스 제어)

  • 홍찬호;윤명중
    • Proceedings of the KIPE Conference
    • /
    • 1997.07a
    • /
    • pp.60-63
    • /
    • 1997
  • A new approach to the position sensor elimination of PM synchronous motor drives is presented in this study. Using the position sensing characteristics of PMSM itself, the actual rotor position as well as the machine speed can be estimated by adaptive flux observer and used as the feedback signal for the vector controlled PMSM drive. The adaptive speed estimation is achieved by model reference adaptive technique. The adaptive laws are derived by the Popov's hyperstability theory and the positivity concept. In order to verify the effectiveness of the proposed scheme, computer simulations are carried out for the actual parameters of a PM synchronous motor and the results well demonstrate that the proposed scheme provides a good estimation value of the rotor speed without mechanical sensor. It is also shown that the actual rotor position as well as the machine speed can be achieved under the variation of the magnet flux linkage. Since the flux linkages are estimated by the adaptive flux observer and used for the identification of the rotor speed, robust estimation of the rotor speed can be performed.

  • PDF