• Title/Summary/Keyword: Sensorless Speed Estimation

Search Result 275, Processing Time 0.022 seconds

Sensorless Vector Control System with Compensated Time Constant of Induction Motor Using a MRAS (MRAS를 이용한 유도 전동기의 시정수 보상을 갖는 속도 센서리스 벡터제어)

  • 임태윤;김동희;황돈하;김민회
    • Proceedings of the KIPE Conference
    • /
    • 1999.07a
    • /
    • pp.540-543
    • /
    • 1999
  • This paper describes a speed sensorless algorithm for vector control system with compensated stator resistance and rotor time constant of induction motor using a model reference adaptive system(MRAS). The system are composed of two MRAC, one is a rotor speed estimation and a stator resistor identification by back-EMF observer, other is used to identify rotor time constant by magnetizing current observer, so that the estimation can be cover a very low speed range with a robust control. The suggest control strategy and estimation method have been validated by simulation study. In the simulation using Matlab/Simulik, the proposed speed sensorless vector control system are shown to operate very well in spite of variable rotor time constant and load fluctuation.

  • PDF

Estimation of Back EMF for the Sensorless Controlled High Speed PMSM (센서리스 제어 고속 동기전동기의 역기전력 추정)

  • Lee, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.114-115
    • /
    • 2013
  • This paper proposes an estimation method of back emf for the sensorless controlled high speed PMSM drive in turbo compressors with air bearings. The back emf of PMSM motor varies due to the temperature variation, which deteriorates the control performance of sensorless controlled PMSM drives. The proposed method is based on the current model of the PMSM motor. The simulation results show that the proposed method estimates the back emf of sensorless controlled PMSM drives with reasonable accuracy for parameter adaptation.

  • PDF

A Study of the ZCP Estimation Methods considering Discretization Error and High Speed BLDC Sensorless Drive (이산화 오차를 고려한 ZCP 추정방법과 고속 BLDC 센서리스 구동에 관한 연구)

  • Seo, Eunjeong;Sohn, Jeongwon;Sunwoo, Myoungho;Lee, Wootaik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.1
    • /
    • pp.95-102
    • /
    • 2014
  • This paper presents zero crossing point(ZCP) estimation methods considering discretization error for a high speed brushless DC(BLDC) motor drive. The ZCP is estimated by detecting the change of back-EMF polarity for the BLDC sensorless drive, and the discretization error exist on the estimated ZCP. The discretization error of the ZCP is a cause of the delay of a commutation timing of current and increment of a current ripple factor. Besides a delay of a ZCP estimation brings on the limitation of a speed range for the BLDC sensorless drive. The compensation method based on the error analysis with probability theory for reducing the effects of the discretization error of the ZCP is proposed. Also a ZCP estimation method according to the Back-EMF patterns is proposed to widen the speed range for the BLDC sensorless drive. The proposed methods are verified by the experiment.

Low Speed Operation of Simplified Sensorless Control of Synchronous Reluctance Motor (동기형 릴럭턴스 전동기의 단순구조형 센서리스 제어의 저속운전)

  • Ahn, Joon-Seon;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.61-68
    • /
    • 2006
  • Many researchers have worked for the sensorless control of SynRM in recent years. However they commonly requires large calculations which induced from its complexity. For low cost application as like home appliance, it is difficult to utilize because of the cost problem. Therefore, it is necessary to introduce simplified sensorless control scheme that is composed of least calculation to estimate the rotor position. In this paper the sensorless control is performed using the characteristics of SynRM structure in which the linkage flux varies with rotor position, so the rotor position can be detected by the change of linkage flux. The estimation of linkage flux can be acquired from the integration of the motor terminal voltage which is commonly used method for the reliability of the estimation. However this estimation method has demerits in low speed operation therefore in that region the motor terminal voltage is compensated by the phase current. A digital simulation (MATLAB) and experiment were performed to confirm the adequacy of the proposed control scheme.

A Sensorless Control of IPMSM using the Improving Instantaneous Reactive Power Compensator (개선된 순시무효전력 보상기를 이용한 IPMSM의 센서없는 속도제어)

  • La, Jae Du
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.10
    • /
    • pp.1303-1307
    • /
    • 2018
  • A improving sensorless compensator for the IPMSM(Interior Permanent Magnet Synchronous Motor) drive system is proposed. Generally, the motor drive system is required the robust parameter variation and disturbance. The speed estimation methods of the conventional IRP(Instantaneous Reactive Power) compensator is improved by the speed estimation techniques of the current model observer with the proposed instantaneous reactive power compensator. Performance evaluations of the novel speed error compensator and sensorless control system are carried out by the experiments.

Field Oriented Vector Control of Induction Motor without Speed Sensor Using Flux Observer (자속관측기를 이용한 유도 전동기 자계 Orientation형 센서리스 벡터제어)

  • 손의식;홍순일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.1
    • /
    • pp.100-107
    • /
    • 2003
  • This study was to control magnetic field orientation-typed sensorless vector control by applying the theory of a rotor flux observer to drive an induction motor. This research suggested a new speed estimation method that estimates speed with the rotor flux obtained by using a flux observer and the variable of state current detected by a current sensor without a speed sensor. Because the speed estimation method is independent from the motor constants, it is not necessary to control the gain of the parameters and the algorithm is simple. In the findings of the study, the researcher was convinced of the control function and the possibility of realization in the simulation experiment of sensorless vector control system by using DSP(Digital Signal Prosessor).

Sensorless Control of Permanent Magnet Synchronous Motors with Compensation for Parameter Uncertainty

  • Yang, Jiaqiang;Mao, Yongle;Chen, Yangsheng
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.3
    • /
    • pp.1166-1176
    • /
    • 2017
  • Estimation errors of the rotor speed and position in sensorless control systems of Permanent Magnet Synchronous Motors (PMSM) will lead to low efficiency and dynamic-performance degradation. In this paper, a parallel-type extended nonlinear observer incorporating the nominal parameters is constructed in the stator-fixed reference frame, with rotor position, speed, and the load torque simultaneously estimated. The stability of the extended nonlinear observer is analyzed using the indirect Lyapunov's method, and observer gains are selected according to the transfer functions of the speed and position estimators. Taking into account the parameter inaccuracies issue, explicit estimation error equations are derived based on the error dynamics of the closed-loop sensorless control system. An equivalent flux error is defined to represent the back Electromotive Force (EMF) error caused by the inaccurate motor parameters, and a compensation strategy is designed to suppress the estimation errors. The effectiveness of the proposed method has been validated through simulation and experimental results.

Speed Sensorless Vector Control for AC servo Motor Using Flux observer

  • Hong, Jeng-pyo;Kwon, Soon-Jae;Hong, Soon-Ill
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.2
    • /
    • pp.185-191
    • /
    • 2004
  • This study describes the scheme of vector drive system without speed sensor for AC servo motor using theory of a flux observer and based on the field oriented vector control. The new method of speed estimation is presented from operate with the position and magnitude of the secondary flux which obtain from the voltage reference and detected current. As the estimated speed is settled by the flux and the machine-specific parameters. this method don't need to adjust the gain of the parameter. Based on the derived theory for vector control. the scheme for sensorless vector drive of AC servo motor is designed and realized. And the experiment verifies it passable to realize the sensorless vector drive based on a field-oriented type.

Sensorless Starting of Direct Drive Horizontal Axis Washing Machines

  • Dianov, Anton;Kim, Nam Su;Lim, Seung Moo
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.148-154
    • /
    • 2014
  • This paper describes problems of the sensorless starting of horizontal axis washing machines with direct drive and suggests solution, which was experimentally verified. Horizontal axis washing machines have very difficult conditions for the drive starting, especially at full load. Inertia of the tub and water, torque from the laundry make load torque at starting higher than rated one and sometimes even higher than the maximum torque of the motor, which makes sensorless starting extremely challenging task. This paper suggests modified open-loop starting, where control system is closed shortly after beginning at low speed and rotates the drum until laundry restructuring. To ensure proper work of the sensorless algorithm at low speed additional measures for increasing of the estimation algorithm performance have been taken. These measures include special algorithm for the drive parameters estimation, which has been developed and verified by the experimental results.

Speed Sensorless Vector Control of Induction Machine in the Field Weakening Region (약계자 영역에서 유도전동기의 속도센서리스 벡터제어)

  • Shin Myoung-Ho;Hyun Dong-Seok
    • Proceedings of the KIPE Conference
    • /
    • 2001.07a
    • /
    • pp.405-408
    • /
    • 2001
  • This paper investigates the problem of the speed estimation of conventional speed sensorless stator flux-oriented induction machine drive in the field weakening region and proposes a new speed estimation scheme to estimate speed exactly in transients in the field weakening region. The error included in the estimated rotor speed is removed by not a low pass filter but Kalman filter.

  • PDF