• Title/Summary/Keyword: Sensorless Speed Control

Search Result 600, Processing Time 0.031 seconds

Low Speed Operation of Simplified Sensorless Control of Synchronous Reluctance Motor (동기형 릴럭턴스 전동기의 단순구조형 센서리스 제어의 저속운전)

  • Ahn, Joon-Seon;Lee, Ju
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.55 no.2
    • /
    • pp.61-68
    • /
    • 2006
  • Many researchers have worked for the sensorless control of SynRM in recent years. However they commonly requires large calculations which induced from its complexity. For low cost application as like home appliance, it is difficult to utilize because of the cost problem. Therefore, it is necessary to introduce simplified sensorless control scheme that is composed of least calculation to estimate the rotor position. In this paper the sensorless control is performed using the characteristics of SynRM structure in which the linkage flux varies with rotor position, so the rotor position can be detected by the change of linkage flux. The estimation of linkage flux can be acquired from the integration of the motor terminal voltage which is commonly used method for the reliability of the estimation. However this estimation method has demerits in low speed operation therefore in that region the motor terminal voltage is compensated by the phase current. A digital simulation (MATLAB) and experiment were performed to confirm the adequacy of the proposed control scheme.

The P/PI Mode Switching Method of Gopinath Flux Observer for Sensorless Vector Control of Induction Motors (유도전동기 센서리스 벡터제어를 위한 고피나스 자속관측기의 P/PI 모드 전환)

  • Kang, Myeong-Kyu;Choi, Jong-Woo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.12
    • /
    • pp.1732-1739
    • /
    • 2017
  • This paper presents a sensorless vector control algorithm of closed loop Gopinath flux observer to enhance the robustness at low speed by switching P/PI mode. Closed loop Gopinath flux observer has the problem in sensorless vector control of induction motor at low speed. This paper solves the problem using the characteristic function of closed loop Gopinath flux observer. P mode shows better performance than PI mode under the cut-off frequency of observer. But P mode always has a flux error due to DC offset, so this paper combines P mode and PI mode. This algorithm shows good performance over wide speed range. The performance has been confirmed through computer simulations using MATLAB SIMULINK and experiments.

A Study on Sensorless Control Methods for BDCM Drives (브러시리스 직류전동기를 위한 센서리스 제어 방식에 관한 연구)

  • 김윤호;조병국;국윤상
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.62-70
    • /
    • 1995
  • Brushless DC Motor (BDCM) is widely used in the industry such as a variable speed motor in a compressor for room air conditioners, because the motor can be easily controlled and operated over a wide speed range. The system to drive BDCM needs encoder that senses rotor position. Gut in a certain application, the position sensor has to be avoided. In the paper, various position sensorless drive systems for BDCM are investigated and critically evaluated, so that the effective method of sensorless control can be selected. Out of these methods, the freewheeling diode current sensing has many advantages. For example, the simple starting procedure makes it possible to perform sensorless control even in low speed. So the hardware design for this method has been carried out and the system has been implemented using DSP. The experimental results verified that the freewheeling diode current sensing approach has advantages in starting procedure and low speed sensing.

  • PDF

Transient Characteristics of Sensorless Vector Control of Induction Motor using Speed Observer (속도 Observer를 이용한 유도전동기 센서리스 벡터제어의 과도특성)

  • 이수원;전칠환;이성룡
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2002.11a
    • /
    • pp.808-811
    • /
    • 2002
  • The stability for a speed sensorless vector control of an induction machine has been studied. These studies show that the sensorless control is apt to be more unstable than the control with sensor on the variation for stator resistance, rotor resistance and system parameters of the machine. First, this paper investigates the speed characteristics when the inertia, J, changes and the rotor resistance, R$_{r}$ changes respectively for a step change of a speed reference, $\omega$. Then, the new speed estimation algorithms with no effects on the parameters variation of the machine and the system is proposed. The proposed method is to implement the observer using voltage, current and constant of the machine. The results are verified by simulation.

  • PDF

Stability of Sensorless Speed Control of PMSM Using State Observer (상태관측기를 이용한 영구자석 동기전동기의 센서리스 속도제어의 안정도)

  • Son, M.K.;Lee, D.H.;Lee, H.J.;Kwon, Y.A.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.12-14
    • /
    • 1998
  • Sensorless PMSM is much studied for the industrial applications and home appliances because a mechanical sensor reduces reliability and increases cost. This paper studies the stability of sensorless speed control of PMSM using state observer. Sensorless control scheme using state observer is known as a scheme having a comparatively good performance. Several papers have studied the stability of state observer control scheme, but have not considered parameter variation which is important to sensorless control. This paper studies the stability through computer simulation in case of parameter variation.

  • PDF

MRAS Based Sensorless Speed Control of Permanent Magnet Synchronous Motor (MRAS에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • 김영삼;권영안
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.541-547
    • /
    • 2003
  • Speed and torque controls of permanent magnet synchronous motors are usually attained by the application of position and speed sensors. However, speed and position sensors require the additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been peformed for the elimination of speed and position sensors. This paper investigates a novel speed sensorless control of a permanent magnet synchronous motor. The proposed control strategy is based on the MRAS(Model Reference Adaptive System) using the state observer model with the current error feedback and the magnet flux model as two models for the back-emf estimation. The proposed algorithm is verified through the simulation and experiment.

Speed Sensorless Control of an Induction Motor using Fuzzy Speed Estimator (퍼지 속도 추정기를 이용한 유도전동기 속도 센서리스 제어)

  • Choi, Sung-Dae;Kim, Lark-Kyo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.1
    • /
    • pp.183-187
    • /
    • 2007
  • This paper proposes Fuzzy Speed Estimator using Fuzzy Logic Controller(FLC) as a adaptive law in Model Reference Adaptive System(MRAS) in order to realize the speed-sensorless control of an induction motor. Fuzzy Speed Estimator estimates the speed of an induction motor with a rotor flux of the reference model and the adjustable model in MRAS. Fuzzy logic controller reduces the error of the rotor flux between the reference model and the adjustable model using the error and the change of error of the rotor flux as the input of FLC. The experiment is executed to verify the propriety and the effectiveness of the proposed speed estimator.

A Sensorless Speed Control of a Permanent Magnet Synchronous Motor that the Estimated Speed is Compensated by using an Instantaneous Reactive Power (순시무효전력을 이용하여 추정속도를 보상한 영구자석 동기전동기의 센세리스 속도 제어)

  • 최양광;김영석;전병호
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.52 no.11
    • /
    • pp.577-585
    • /
    • 2003
  • This paper proposes a new speed sensorless control method of a permanent magnet synchronous motor using an instantaneous reactive power. In the proposed algorithm, the line currents are estimated by a observer and the estimated speed can be yielded from the voltage equation because the information of speed is included in back emf. But the speed estimation error between the estimated and the real speeds is occured by errors due to measuring the motor parameters and sensing the line current and the input voltage. To minimize the speed estimation error, the estimated speed is compensated by using an instantaneous reactive power. In this paper, the proposed algorithm is not affected by mechanical motor parameters because the mechanical equation is not used. The effectiveness of algorithm is confirmed by the experiments.

Support-vector-machine Based Sensorless Control of Permanent Magnet Synchronous Motor

  • Back, Woon-Jae;Han, Dong-Chang;Kim, Jong-Mu;Park, Jung-Il;Lee, Suk-Gyu
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.149-152
    • /
    • 2004
  • Speed and torque control of PMSM(Permanent Magnet Synchronous Motor) are usually achieved by using position and speed sensors which require additional mounting space, reduce the reliability in harsh environments and increase the cost of a motor. Therefore, many studies have been performed for the elimination of speed and position sensors. In this paper, a novel speed sensorless control of a permanent magnet synchronous motor based on SVMR(Support Vector Machine Regression) is presented. The SVM regression method is an algorithm that estimates an unknown mapping between a system's input and outputs, from the available data or training data. Two well-known different voltage model is necessary to estimate the speed of a PMSM. The validity and the usefulness of proposed algorithm are thoroughly verified through numerical simulation.

  • PDF

Robust Speed Sensorless Vector Control of Induction Motor for Parameter Variations (파라메타 변동에 강인한 유도전동기의 속도센서리스 벡터제어)

  • Kim, Sang-Uk;Kim, Seoung-Beom;Kim, Jin-Soo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1997.07f
    • /
    • pp.2113-2116
    • /
    • 1997
  • The speed sensorless vector control of induction motor using the rotor speed and flux estimation is widely used. In practice, these schemes depend on the accurate parameters of the machine. If in the vector control scheme an inaccurate parameter of induction motor due to skin effects and to temperature variations is used. it is difficult to achieve correct field orientation. From this reason. we propose robust speed sensorless vector control of induction motor against the variations of parameter and disturbance by using extended Kalman filter. For speed and rotor flux estimation. conventional adaptive flux observer is applied. extended Kalman filter which is correctly capable of estimating rotor flux and load by eliminating virtually influences of structural noises is proposed. Simulation results show the effectiveness of the control strategy proposed here for the induction motor drives.

  • PDF