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1. INTRODUCTION 

Recently, PMSMs have been noticed as variable speed 
motors with high-performance in many applications because 
of some merits such as high efficiency and high power factor. 
The vector control in the speed and torque controlled ac drive 
is widely used for a high performance application. The vector 
control of a permanent magnet synchronous motor is usually 
implemented through measuring the speed and position. 
However, speed and position sensors require additional 
mounting space, reduce the reliability in harsh environments 
and increase the cost of a motor. Various control algorithms 
have been proposed for the elimination of speed and position 
sensors: estimators using state equations, Luenberger or 
Kalman-filter observers, sliding mode control, Kalman-filter 
observers, sliding mode control, saliency effects, artificial 
intelligence, direct control of torque and flux, and so on[1-4]. 
In this paper, a novel speed sensorless control of a permanent 
magnet synchronous motor using SVMR(Support Vector 
Machine Regression) based on statistical learning theory is 
presented.  Recently, a novel neural network algorithm, 
called SVM, was developed by Vapnik and his co-workers. 
Unlike most of the traditional neural network models which 
implement the empirical risk minimization principle, SVM 
implements the structural risk minimization principle which 
seeks to minimize an upper bound of the generalization error 
rather than the training error. This induction principle is based 
on the fact that the generalization error is bounded by the sum 
of the training error and a confidence interval term that 
depends on the Vapnik-Chervonenkis (VC) dimension. Based 
on this principle, SVM achieves an optimum network structure 
by striking a right balance between the empirical error and the 
VC-confidence interval. This eventually results in better 
generalization performance than other neural network models. 
Another merit of SVM lies in the training of SVM equivalent 
to solving a linearly constrained quadratic programming[6-7]. 
The proposed speed estimate algorithm is based on the SVMR 
using the stationary reference frame fixed to the stator voltage 
model and rotor reference frame with the rotating speed of 

r
voltage model as two models for the back-EMF estimation. 

The validity and the usefulness of proposed algorithm are 
thoroughly verified through numerical simulation.  

2. Mathematical modeling of PMSM 

The proposed SVMR sensorless algorithm uses the 
stationary reference frame fixed to the stator voltage model 
and rotor reference frame with the rotating speed of 

r
voltage model as two models for the back-EMF estimation.   

From the stator voltage equations in the real s

sd -axes, and 

s

sq -axis voltage equations in the stationary reference frame 
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From the stator voltage equations in the  real s

rd -axes, and 
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rq -axis voltage equations in the rotor reference frame fixed to 

the stator can be expressed as  
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dqre  are the back-EMF constant,  back-EMF 
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 3. Support Vector Machine Regression 

A regression method is an algorithm that estimates an 
unknown mapping between a system's input and outputs, from 
the available data or training data. Once such a dependency 
has been accurately estimated, it can be used for prediction of 
system outputs from the input values. The goal of regression is 
to select a function which approximates best the system's 
response. A function approximation problem can be 

formulated to obtain a function f  from a set of observations,  

),(),...,,( 11 NN xyxy with mRx  and Ry , where N is

the number of training data, x is the input vector, and y is

the output data. The function in SVR gas the form of 

bxKxf T )(),(                             (9) 

where )(K is a mapping  from mR  to so-called higher 

dimensional feature space FF ,  is a weight vector to be 

identified in the function, and b is a bias term. To calculate 

the parameter vector , the following cost function should 

be minimized [6]-[15].  
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where C is a pre-specified value that controls the cost 

incurred by training errors and the slack variables, *

ii
are 

introduced to accommodate error on the input training set.  

With many reasonable choice of loss function, , the 

solution will be characterized as the minimum of a convex 
function. The constraints also include a term, , which 

allows a margin of error without incurring any cost. The value 
of  can affect the number of support vectors used to construct 
the regression function. The bigger is, the fewer support 

vectors are selected.  Hence, -values affect model 

complexity. 

 Our goal is to find function ),(xf that has at most

deviation from the actually obtained targets 
iy for all the 

training data, and at the same time, is as flat as possible for 
good generalization. In other words, we do not care about 
errors as long as they are less than , but will not accept any 

deviations larger than . This is equivalent to minimizing an 

upper bound on the generalization error, rather than 
minimizing training error.  

The optimization problem in (10) can be transformed into 
the dual problem [11]-[15], and its solution is given by  
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In (11), the inner product ))()(( xKxK i
 in the feature 

space is usually considered as a kernel function ),( xxK i
.

Several choices for the kernel are possible to reflect special 
properties of approximating functions:

Linear kernel :
i

T

i xxxxK ),(

RBF kernel : )/exp(),( 22

ii xxxxK (12)

The input data are projected to a higher dimensional feature 

space by mapping )(K . A linear regression is made in this 

higher dimensional feature space, responding to a nonlinear 
regression in the original input space of interest as shown in 
Fig. 1.  

4. Speed estimation using SVMR

Target data and training data of  SVMR use q axis stator 

the back-EMF model of (4) and rotor q axis rotor the 

back-EMF model of (8). In (8), if s
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The back-EMF model can be written in the form (9) with  
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Using quadratic loss function, one has to find Lagrange 

multipliers lii ,, * , that minimize the quadratic form  
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The regression function is given by  
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In order to solve this problem, one has to choose the 
parameters C  and the value of . Parameters C  and  

usually are selected by users based on a priori knowledge 
and/or user expertise. Obviously, this approach is not 
appropriate for non-expert users. It is well-known that the 
value of  should be proportional to the input noise level 

that is difficult to estimate from data and the value of  can 

effect the number of support vectors used to construct the 
regression function. In other words, SVR performance 
depends on both parameters C  and the value C  of .

Unfortunately, SVR framework does not provide clear 
guidelines on how to select the value of C  and . Hence, 

we applied the reference[11] in a simulation. Estimated motor 
speed is given by  

N

i

pr K
1

                                  (20) 

where
pK  is proportional gain.  

Fig. 2. illustrates the structure of the proposed speed estimator 
of PMSM.  
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Fig.1. A feature map from input space to higher dimensional 
feature space. 

Fig.2. Structure of the speed estimator using SVMR  

5. Simulation and discussion

The simulation has been performed for the verification of 
the proposed control algorithm. Table 1 shows the 
specifications of PMSM used in the simulation.  

Table 1  Motor specifications 
Number of pole   8 

Rs 0.423
Ls 4.76mH 

Moment of inertia 22100.3 mKg

Back-EMF constant 1.266 V/rpm 
Nominal power 0.75Kw 

Fig.3 shows the speed responses in the speed commands of 
50rpm, 200rpm and 1000rpm without load. As shown in Fig. 3, 
the proposed algorithm has good speed response in the high 
speeds.  However below 50rpm speed command has some 
bad speed response in the low speeds. The simulation results 
SVMR sensorless algorithm is confirmation of feasibility as 
the speed estimator.   

6. Conclusions

This paper proposed a novel speed sensorless control 
algorithm of a permanent magnet synchronous motor. The 
proposed control algorithm is based on the SVMR using the 
stationary reference voltage model and rotor voltage model as 
two models for the back-EMF estimation. The simulation 
results SVMR sensorless algorithm is confirmation of 
feasibility as the speed estimator.  

Fig.3. Speed responses in the speed command of 
 50rpm, 200rpm, and1000rpm. 
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