• Title/Summary/Keyword: Sensor-less

Search Result 1,056, Processing Time 0.027 seconds

Development of the Smallest, High-accuracy NDIR Methane Sensor Module to Detect Low Concentration (저 농도 감지를 위한 NDIR 방식의 초소형 고정도 메탄센서 모듈)

  • Kim, Dong-Hwan;Lee, Ihn;Bang, Il-Soon;Chun, Dong-Gi;Kim, Il-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.199-203
    • /
    • 2018
  • In this study, we develop a methane sensor module that can detect low concentrations below 5,000 ppm and measure up to the detection limit of 50 ppm with the NDIR method, with a long lifetime and high accuracy. Methane ($CH_4$) is one of a representative greenhouse gas, which is very explosive. Thus, it is important to quickly and accurately measure methane concentration in the air. To adjust the methane sensor for industrial field applications, a NDIR-based small sensor was implemented and characterized, where its volume was $4cm{\times}4cm{\times}2cm$ and its response time ($T_{90}$) was less than 30 sec. These results demonstrate that the proposed sensor is commercially available for low-concentration measurement, low volume, and fast response application, such as IoT sensor nodes and portable devices.

A Study of a Dual-Electromagnetic Sensor for Automatic Weld Seam Tracking (용접선 자동추적을 위한 이중 전자기센서의 개발에 관한 연구)

  • 신준호;김재응
    • Journal of Welding and Joining
    • /
    • v.18 no.4
    • /
    • pp.70-75
    • /
    • 2000
  • The weld seam tracking system for arc welding process uses various kinds of sensors such as arc sensor, vision sensor, laser displacement and so on. Among the variety of sensors available, electro-magnetic sensor is one of the most useful methods especially in sheet metal butt-joint arc welding, primarily because it is hardly affected by the intense arc light and fume generated during the welding process, and also by the surface condition of weldments. In this study, a dual-electromagnetic sensor, which utilizes the induced current variation in the sensing coil due to the eddy current variation of the metal near the sensor, was developed for arc welding of sheet metal butt-joints. The dual-electromagnetic sensor thus detects the offset displacement of weld line from the center of sensor head even though there's no clearance in the joint. A set of design variables of the sensor were determined for the maximum sensing capability through the repeated experiments. Seam tracking is performed by correcting the position of sensor to the amount of offset displacement every sampling period. From the experimental results, the developed sensor showed the excellent capability of weld seam detection when the sensor to workpiece distance is near less than 5 mm, and it was revealed that the system has excellent seam tracking ability for the butt-joint of sheet metal.

  • PDF

A Study of Thermal Performances for Micro Gas Sensor (마이크로 가스센서의 열적 성능에 관한 연구)

  • Joo Young-Cheol;Kim Chang-Kyo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.6 s.249
    • /
    • pp.531-537
    • /
    • 2006
  • A lever type $NO_2$ micro gas sensor was fabricated by MEMS technology. In order to heat up the gas sensing material to a target temperature, a micro heater was built on the gas sensor. The sensing material laid on the heater and electrodes and did not contact with the silicon base to minimize the heat loss to the silicon base. The electric power to heat up the gas sensor to a target temperature was measured. The temperature distribution of micro gas sensor was analyzed by a CFD program. The predicted electric power of micro heater to heat up the sensing material to the target temperature showed a good agreement with the measured data. The design of micro gas sensor could be modified to show more uniform temperature distribution and to consume less electric power by optimizing the layout of micro heater and electrodes.

A Clamp Type Sensor for AC/DC Low Current Measurement (클램프 형 직교류 저 전류 측정 센서)

  • 박영태;유광민
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.12
    • /
    • pp.1045-1053
    • /
    • 2002
  • This paper describes characteristics of the developed current sensor by means of two identically wound magnetic cores forming a clamp like for measurement of a low DC, or AC current. This sensor consists of peak value detectors, a sensor of an electrically compensated current transformer type, a reference alternating voltage, Precision measuring circuits to measure the output signals of sensor with harmonics, and can be measured up to 2 A at DC, or AC current. The current sensor shows a measurement accuracy of less than 0.3% in the frequency range 40 Hz - 10 HBz. The resolution and sensitivity of the sensor were evaluated 0.1 mA and 10 mV/mA, respectively.

Wireless sensor network for decentralized damage detection of building structures

  • Park, Jong-Woong;Sim, Sung-Han;Jung, Hyung-Jo
    • Smart Structures and Systems
    • /
    • v.12 no.3_4
    • /
    • pp.399-414
    • /
    • 2013
  • The smart sensor technology has opened new horizons for assessing and monitoring structural health of civil infrastructure. Smart sensor's unique features such as onboard computation, wireless communication, and cost effectiveness can enable a dense network of sensors that is essential for accurate assessment of structural health in large-scale civil structures. While most research efforts to date have been focused on realizing wireless smart sensor networks (WSSN) on bridge structures, relatively less attention is paid to applying this technology to buildings. This paper presents a decentralized damage detection using the WSSN for building structures. An existing flexibility-based damage detection method is extended to be used in the decentralized computing environment offered by the WSSN and implemented on MEMSIC's Imote2 smart sensor platform. Numerical simulation and laboratory experiment are conducted to validate the WSSN for decentralized damage detection of building structures.

Development of nano-positioner using fiber optic EFPI sensor (광섬유 EFPI 센서를 이용한 나노 이송장치의 개발)

  • Park, Sang-Wuk;Kim, Dae-Hyun;Kim, Chun-Gon
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.5
    • /
    • pp.302-307
    • /
    • 2005
  • Precision displacement of less than a few nm resolution was measured in real-time using fiber optic EFPI sensor. The novel method for real-time processing of analyzing EFPI output signal was developed and verified. Linearity in the mean values of interferometric light intensity among adjacent fringes was shown and verified the sinusoidal approximation algorithm that estimates past and coming fringe values. Real-time signal processing program was developed and the intensity signal of the EFPI sensor was transformed to the phase shift with this program. The resolution below $0.36{\sim}8.6$ nm in the displacement range of $0{\sim}300{\mu}m$ was obtained. The nano-positioner with a piezoelectric actuator and the EFPI sensor system was designed and tested. The positioner successfully reached to the desired destination within 1 nm accuracy.

Development of Calf Link Force Sensors of Walking Assist Robot for Leg Patients (다리 환자를 위한 보행보조로봇의 종아리 링크 3축 힘센서 개발)

  • Kim, Han-Sol;Kim, Gab-Soon
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.2
    • /
    • pp.114-121
    • /
    • 2017
  • This paper describes the design and fabrication of a three-axis force sensor with parallel plate beams (PPSs) for measuring the calf force while a patient with a walking assist robot is walking. Current walking assist robots can't measure the weight of the patient's leg and the robot's leg which required for robot control. So, the three-axis force sensor in the calf link is designed and manufactured, it is composed of a Fx force sensor, a Fy force sensor and a Fz force sensor. The three-axis force sensor was designed using by FEM(Finite Element Method), and fabricated using strain-gages. The characteristics experiment of the three-axis force sensor was carried out respectively. The test results indicated that the repeatability error and the non-linearity error of three-axis force sensor was less than 0.04% respectively. Therefore, the fabricated three-axis force sensor in the calf link can be used to measure the patient's calf force in the walking assist robot.

Experimental Study on the Rotational Speed Measuring Condition of a Gasoline Fuel Pump for a Small-Size Engine (소형엔진용 가솔린 연료펌프의 회전수 측정 조건에 대한 실험적 연구)

  • Lee, Jun-Sun;Park, Sung-Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.9
    • /
    • pp.3184-3189
    • /
    • 2010
  • To develop gasoline engine fuel pump, it is needed to measure the rotational speed of the pump. In general, because gasoline fuel pump is submerged in the fuel tank, it is difficult to measure the rotational speed directly. Currently, there are two popular methods measuring the rotational speed. One of them is using a piezoelectric accelerometer, and the other is using a current sensor. Originally, a piezoelectric accelerometer had been applied to measure the frequency of the motor vibration. A current sensor is measuring current frequency of the commutator slot. In this study, both the piezoelectric accelerometer and the current sensor have been applied on the fuel pump to calculate the rotational speed at the same time. As a result, the current sensor delivered highly accurate rotational speed information compared with that of the piezoelectric accelerometer. Especially, low rotational speed region, the current sensor shows very robust measuring characteristics. To measure the rotational speed within 1% error, the piezoelectric accelerometer needs to be set with less then 0.5Hz datum storage interval, and the current sensor needs to be set with less then 2.0Hz datum storage interval.

Characteristics of Mn-Ni-Co system for automobile fuel shortage detecting sensor with $Bi_2O_3$ addition ($Bi_2O_3$를 첨가한 Mn-Ni-Co계 써미스타의 자동차 연료 부족 감지용 센서 특성)

  • 윤중락;이헌용;김두용;오창섭
    • Electrical & Electronic Materials
    • /
    • v.9 no.5
    • /
    • pp.455-462
    • /
    • 1996
  • Automobile Fuel Shortage Detecting Sensor, in this paper, was fabricated by using heat dissipation coefficient difference between gasoline and air condition the NTC thermistor of Mn-Ni Co system with the composition ratio of Mn$_{3}$O$_{4}$ : 9wt%, NiO : 28wt%, and CO$_{3}$O$_{4}$ : 61wt%. The condition of sensor operation is that, for turn-on characteristics, the time of arriving at 135mA must be less than 180 second when the DC voltage of 11V is applied in the air condition of -10.deg. C and that, for turn-off characteristics, the saturation current must be less than 60mA when the DC voltage of 15V is applied in the gasoline condition of 60.deg. C. It is known, from the experimental results, that the resistance range and B-constant for the Automobile Fuel Shortage Detecting Sensor with dimension of 5*3*0.9mm were 850-1150.ohm. and 1150-1250.deg. C, respectively and the resistance range and B-constant were agree with that of sensor operation condition. When Bi$_{2}$O$_{3}$ of 0-0.5wt% was added to Mn$_{3}$O$_{4}$ : 9wt%, NiO : 28wt%, and CO$_{3}$O$_{4}$ : 61wt% composition, the resistivity and B-value were 380-430(.ohm.-cm) and 1930 - 2030, respectively. Particularly, for Bi$_{3}$O$_{3}$ of 0.25-0.5wt%, the sintering density of over 90% and the operation characteristics necessary to Automobile Fuel Shortage Detecting Sensor were obtained. The difference of heat dissipation coefficient gasoline and air condition was 15 times.

  • PDF

UHF Sensor Development for Partial Discharge Exclusively for Measurement in 25.8kV GIS (25.8kV GIS 부분방전 측정전용 UHF센서 개발)

  • Choi, Mun-Gyu;Cha, Hanju
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.6
    • /
    • pp.1083-1088
    • /
    • 2016
  • 25.8kV GIS part generated by sensors to measure contact an inflow of noise depending on the extent of the measured discharge occurs often not easy. Partial discharge signal measurement sensor suitable for developing a more useful measurements at the scene to this, partial discharge waveform analysis developed a sensor, and to utilize forSensor on the development of the most important is VSWR decided to (voltage standing wave ratio) voltage standing-wave ratio less than 1.5 and decided less than at the full spectrum bands that are measured, this time Return loss, as measured value by absolute criteria 14.0 dB produced the sensor, designed to or more. UHF 1.5~0.5 GHz bandwidth spectrum to be measured in GIS. UHF bands were designed to be able to measure the best signal. Recently, 25.8kV GIS production company has been increasing variety of GIS were made open spacer in partial discharge in accordance with the not very easy to detect the signal. The sensor is designed height of four cm external spacer is attachment GIS in an influx of outside noise measurement, and be so manufactured as to facilitate the least we've done. Also, since partial discharge which occur can measure the frequency of the 170kV GIS external partial-discharge signals that occur at the scene of insulation applied to the spacer. Features, and also derived good results using global positioning. Also measured discharge point about sensors that are stable and the reliability of the development and local substation equipment failure occurring signal analysis through the discharge for the prevention of widely. There should be to believe that used.