• Title/Summary/Keyword: Sensor substrate

Search Result 616, Processing Time 0.035 seconds

Multifunctional Fire Sensor Fabricated on a Flexible Substrate (플렉서블 기판상에 제작한 다기능 화재센서에 관한 연구)

  • Seo, JoonYoung;Ko, Dongwan;Choi, Junseck;Noh, JaeHa;Jung, Jung-Yeul;Lee, MoonJin;Lee, Sangtae;Chang, Jiho
    • Journal of Sensor Science and Technology
    • /
    • v.29 no.1
    • /
    • pp.40-44
    • /
    • 2020
  • An integrated multifunctional sensor, capable of raising an early electric-fire warning, was fabricated. An arc-light, temperature, and humidity sensor was fabricated on a flexible substrate using a printed thin film of indium tin oxide. A polyethylene terephthalate (PET) substrate was used as the flexible substrate. The sensor was fabricated on a PET substrate, and its operating characteristics were tested. The operating performances of the sensor when serving as an arc-light, a temperature, and a humidity sensor were estimated to be 0.6247 Ω/W, 80.6 Ω/K, and -4.08 Ω/RH, respectively. The feasibility of the proposed fire sensor was demonstrated; it costs low and offers multiple functionalities.

Carbon Dioxide Sensor Substrate for Surface-mounted Packaging

  • Han, Hyeuk-Jin;Kim, Tae Wan;Park, Kwang-Min;Park, Chong-Ook
    • Journal of Sensor Science and Technology
    • /
    • v.24 no.3
    • /
    • pp.159-164
    • /
    • 2015
  • Solid state electrochemical and chemo-resistive gas sensors have been used widely but can operate only under high temperature. For reducing the power consumption and optimizing the structure of the substrate of these sensors, we conducted device and circuit simulations using the COMSOL Multiphysics simulator. For assessing the effective types of substrate and heat isolation, we conducted three-dimensional thermal simulations in two separate parts; (a) by changing the shape of the contacting holes and (b) punching additional holes on the substrate. Thus, it was possible to achieve high temperature in the sensor end of the substrate while maintaining low power consumption, and temperature in the circuit.

Development of novel strain sensor using surface acoustic wave (새로운 표면탄성파를 이용한 변형률 센서 개발)

  • Oh, Hae-Kwan;Hwang, U-Jin;Eun, Kyung-Tae;Choa, Sung-Hun;Lee, Kee-Keun;Yang, Sang-Sik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.594-599
    • /
    • 2011
  • A SAW strain sensor based on Shear Horizontal wave with an 92 MHz central frequency was developed. It consists of SAW sensor, PCB substrate and bonding material (Loctite 401). External force applied to PCB substrate bonded to a piezoelectric substrate induces strain at the substrate surface, which causes changes in the elastic constant and density of the substrate and hence the propagation velocity of the SAW. The change in the velocity of the SAW result in a frequency shift of the sensor and by measuring a frequency shift, we can extract the strain induced by the external force. The $41^{\circ}$ YX $LiNbO_3$ was used because it has a Leaky shear horizontal(SH) wave propagation mode and a high electromechanical coupling coefficient ($K^2$=17.2%). And to compare with Rayleigh wave mode, $128^{\circ}$ YX $LiNbO_3$ was used. And to make a stable and low insert loss, Split IDT structure was used. The obtained sensitivity and linearity of the SAW strain sensor in the case of Split IDT were measured to be 17.2 kHz / % and 0.99, respectively.

Development of Eco-friendly Paper Glucose Sensor Using Printing Technology (인쇄 기술을 이용한 친환경 종이 혈당 센서 스트립 개발)

  • Lee, Young Tae
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.116-120
    • /
    • 2020
  • In this paper, we developed an electrochemical glucose sensor strip using a paper substrate. The paper glucose sensor strip is eco-friendly because it uses paper as a substrate, and it has the advantage that it can be manufactured only with four printing, drying and cutting processes. The paper glucose sensor is significantly simplified by the production process than the conventional glucose sensors because the production of only four printing on the paper substrate. In this paper, eco-friendly tracing paper was used to develop a paper glucose sensor strip, and screen-printing technology was used to form a carbon/silver electrode, insulating layer and glucose oxidase(GOD) layer. The developed paper glucose sensor strip has a flat structure with a size of 30 × 4.6 ㎟, and blood injection is a type of direct contact with the exposed enzyme layer above the strip. In this paper, the performance of paper glucose sensor strips was evaluated by analyzing the cyclic voltammetry(CV) and chronoamperometry(CA) characteristics.

Comparison on Irrigation Management Methods by Integrated Solar Radiation and Drainage Level Sensor in Rockwool and Coir Bag Culture for Tomato (토마토의 암면과 코이어 자루재배시 일사량제어법과 배액전극제어법에 의한 급액제어 방법 비교)

  • Kim, Sung-Eun;Sim, Sang-Youn;Kim, Young-Shik
    • Journal of Bio-Environment Control
    • /
    • v.19 no.1
    • /
    • pp.12-18
    • /
    • 2010
  • Irrigation management methods controlled by integrated solar radiation (ISR) or drainage level sensor were evaluated in rockwool or coir bag culture as tomato (Solanum lycopersicum L.) production system. Substrate water content and drainage percentage were more stable in the drainage level sensor method than in the ISR method regardless of substrate type. Total yield and marketable yield were high in the drainage level sensor method, but not between substrates in the same irrigation management method. Sugar content was affected more by the substrate type than irrigation method. The drainage level sensor method was elucidated to be better than the ISR method regardless of substrate type.

Fabrication of an Inkjet-printed Plastic Force Sensor Using PEDOT:PSS (PEDOT:PSS를 이용한 잉크젯 프린팅 방식 플라스틱 힘 센서 개발)

  • Lee, Wanghoon;Son, Sun-Young;Koo, Jungsik;Yeom, Se-Hyuk
    • Journal of Sensor Science and Technology
    • /
    • v.28 no.6
    • /
    • pp.390-394
    • /
    • 2019
  • This paper presents an inkjet-printed plastic force sensor using PEDOT:PSS. Using a piezoelectric-type inkjet printer, the force sensor was manufactured by printing PEDOT:PSS ink onto a polyimide (PI) substrate film. Applying a vertical force of 0 to 100 N to the force sensor on the PI substrate with a thickness of 64 mm, the resistance of the force sensor increased in proportion to the input force by the length deformation of the PI substrates and the sensor pattern. As a result, the fabricated sensor has a characteristic of 0.001% /N with a linearity of 99.38%. In addition, as the thickness of the PI substrate film increased, the sensitivity of the sensor increased linearly. The fabricated force sensor is expected to be applied to industrial sites and healthcare fields.

Surface Micromachined Pressure Sensor with Internal Substrate Vacuum Cavity

  • Je, Chang Han;Choi, Chang Auck;Lee, Sung Q;Yang, Woo Seok
    • ETRI Journal
    • /
    • v.38 no.4
    • /
    • pp.685-694
    • /
    • 2016
  • A surface micromachined piezoresistive pressure sensor with a novel internal substrate vacuum cavity was developed. The proposed internal substrate vacuum cavity is formed by selectively etching the silicon substrate under the sensing diaphragm. For the proposed cavity, a new fabrication process including a cavity side-wall formation, dry isotropic cavity etching, and cavity vacuum sealing was developed that is fully CMOS-compatible, low in cost, and reliable. The sensitivity of the fabricated pressure sensors is 2.80 mV/V/bar and 3.46 mV/V/bar for a rectangular and circular diaphragm, respectively, and the linearity is 0.39% and 0.16% for these two diaphragms. The temperature coefficient of the resistances of the polysilicon piezoresistor is 0.003% to 0.005% per degree of Celsius according to the sensor design. The temperature coefficient of the offset voltage at 1 atm is 0.0019 mV and 0.0051 mV per degree of Celsius for a rectangular and circular diaphragm, respectively. The measurement results demonstrate the feasibility of the proposed pressure sensor as a highly sensitive circuit-integrated pressure sensor.

NiO(Co0.25Mn0.75)2O3 and BaSrTiO3 thick films on alumina substrate as temperature and humidity ceramic multisensors

  • Oh, Young-Jei;Lee, Deuk-Yong
    • Journal of Sensor Science and Technology
    • /
    • v.18 no.5
    • /
    • pp.343-348
    • /
    • 2009
  • $NiO{\cdot}(Co_{0.25}Mn_{0.75})_2O_3$(Mn-Ni-Co) and $Ba_{0.5}Sr_{0.5}TiO_3$(BST) thick films were screen printed on Pt patterned alumina substrate to investigate the effects of sintering temperature on humidity and temperature sensing properties of ceramic sensors. A raise in sintering temperature increased resistance and B constant of the Mn-Ni-Co temperature sensor. This may have derived from the synergic effects of the reduction in charge carriers caused by the substitution of Co for Mn as well as the formation of microcracks from the difference in thermal expansion coefficients. Dependence of resistance on humidity of the Mn-Ni-Co temperature sensor, however, was not found. BST films sintered at temperatures in the range of $1100^{\circ}C$ to $1150^{\circ}C$ showed excellent humidity sensing properties. The BST humidity sensor was faster in its response than the Mn-Ni-Co temperature sensor. The humidity sensor, however, proved to be unstable under various temperatures, suggesting a need for a temperature stabilizing device. In contrast, the Mn-Ni-Co temperature sensor was stable under humid conditions.

Stage System for LCD Exposure Equipment Using Touch-type Displacement Sensor (접촉형 변위센서를 이용한 LCD노광기용 스테이지 시스템)

  • Yim, Kwang-Kuk;Seo, Hwa-Il;Cho, Hyun-Chan;Kim, Kwang-Sun;Kang, Heung-Seok
    • Journal of the Semiconductor & Display Technology
    • /
    • v.6 no.1 s.18
    • /
    • pp.7-10
    • /
    • 2007
  • In an effort to reduce weaknesses of existing laser displacement sensor-based system, a sensing device for distance and balance of mask-substrate gap using touch-type displacement sensor was suggested. The device suggested in this study is expected to solve the problems of prices and reflections, by means of a touch-type sensor. LCD exposure equipment stage system including suggested sensing device was realized to assess the characteristics of sensing the balance and gap between mask and substrate. It was verified that a touch-type displacement sensor-based device to adjust the balance and distance of mask-substrate gap suggested in this study can be applicable to LCD expose equipment in practice.

  • PDF

Quantification of Rockwool Substrate Water Content using a Capacitive Water Sensor (정전용량 수분센서의 배지 함수량 정량화)

  • Baek, Jeong-Hyeon;Park, Ju-Sung;Lee, Ho-Jin;An, Jin-Hee;Choi, Eun-Young
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.27-36
    • /
    • 2021
  • A capacitive water sensor was developed to measure the capacitance over a wide part of a substrate using an insulated electrode plate (30 cm × 10 cm) with copper and Teflon attached on either side of the substrate. This study aimed to convert the capacitance output obtained from the condenser-type capacitance sensor into the substrate water content. The quantification experiment was performed by measuring the changes in substrate water weight and capacitance while providing a nutrient solution and by subsequently comparing these values. The substrate water weight and capacitance were measured every 20 to 30 seconds using the sensor and load cell with a software developed specifically for this study. Using a curve-fitting program, the substrate water content was estimated from the output of the capacitance using the water weight and capacitance of the substrate as variables. When the amount of water supplied was increased, the capacitance tended to increase. Coefficient of variation (CV) in capacitance according to the water weight in substrate was greater with the 1.0 kg of water weight, compared with other weights. Thus, the fitting was performed with higher than 1.0 kg, from 1.7 to 6.0 kg of water weight. The correlation coefficient between the capacitance and water weight in substrate was 0.9696. The calibration equation estimated water content from the capacitance, and it was compared with the substrate water weight measured by the load cell.