Browse > Article
http://dx.doi.org/10.5369/JSST.2019.28.6.390

Fabrication of an Inkjet-printed Plastic Force Sensor Using PEDOT:PSS  

Lee, Wanghoon (Realistic Media Research Center, Gumi Electronics and Information Technology Research Institute)
Son, Sun-Young (Realistic Media Research Center, Gumi Electronics and Information Technology Research Institute)
Koo, Jungsik (Realistic Media Research Center, Gumi Electronics and Information Technology Research Institute)
Yeom, Se-Hyuk (Realistic Media Research Center, Gumi Electronics and Information Technology Research Institute)
Publication Information
Journal of Sensor Science and Technology / v.28, no.6, 2019 , pp. 390-394 More about this Journal
Abstract
This paper presents an inkjet-printed plastic force sensor using PEDOT:PSS. Using a piezoelectric-type inkjet printer, the force sensor was manufactured by printing PEDOT:PSS ink onto a polyimide (PI) substrate film. Applying a vertical force of 0 to 100 N to the force sensor on the PI substrate with a thickness of 64 mm, the resistance of the force sensor increased in proportion to the input force by the length deformation of the PI substrates and the sensor pattern. As a result, the fabricated sensor has a characteristic of 0.001% /N with a linearity of 99.38%. In addition, as the thickness of the PI substrate film increased, the sensitivity of the sensor increased linearly. The fabricated force sensor is expected to be applied to industrial sites and healthcare fields.
Keywords
Inkjet; Plastic force sensor; PEDOT:PSS; Polyimide;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Mohammed G. Mohammed, and Rebecca Kramer, "All-Printed Flexible and Stretchable Electronics", Adv. Mater., Vol. 29, No. 19, pp. 1604965(1)-1604965(7), 2017.   DOI
2 M. Gao, L. Li, and Y. Song, "Inkjet printing wearable electronic devices", J. Mater. Chem. C, Vol. 5, No. 12, pp. 2971-2993, 2017.   DOI
3 M. Tavakoli, M. H. Malakooti, H. Paisana, Y. Ohm, D. G Marques, P. A. Lepes, A. P. Piedade, A. T. de Almeida, and C. Majidi, "EGaIn-Assisted Room-Temperature Sintering of Silver Nanoparticles Stretchable, Inkjet-Printed, Thin-Film Electronics", Adv. Mater., Vol. 30, No. 29, pp. 1801852(1)-1801852(7), 2018.   DOI
4 Y.-H. Lin, P. Pattanasattayavong, and T. D. Anthopoulos, "Metal-Halide Perovskite Transistors for Printed Electronics: Challenge and Opportunities", Adv. Mater., Vol. 29, No. 46, pp. 1702838(1)-1702838(14), 2017.   DOI
5 A. E. Ostfeld, I. Deckman, A. M. Gaikwad, C. M. Lochner, and A. C. Arias, "Screen printed passive components for flexible power electronics", Sci. Rep., Vol. 5, pp. 15959(1)-15959(11), 2015.   DOI
6 X. Guo, Y. Hang, Z. Xie, C. Wu, L. Gao, and C. Liu, "Flexible and wearable 2.45GHz CPW-fed antenna using inkjet-printing of silver nanoparticles on pet substrate", Microw. Opt. Technol. Lett., Vol. 59, No. 1, pp. 204-208, 2017.   DOI
7 S. Cinti, N. Colozza, I. Cacciotti, D. Moscone, M. Polomoshnov, E. Sowade, R. R. Baumann, and F. Arduni, "Electroanalysis moves towards paper-based printed electronics: carbon black nanomodified inkjet-printed sensor for ascorbic acid detection as a case study", Sens. Actuators B, Vol. 265, No. 7, pp. 155-160, 2018.   DOI
8 A. Falco, J. F. Salmeron, F. C. Loghin, P. Lugli, and A. Rivadeneyra, "Fully Printed Flexible Single-Chip RFID Tag with Light Detection Capabilities", Sensors, Vol. 17, No. 3, pp. 534-545, 2017.   DOI
9 A. Salim, and S. Lim, "Review of recent inkjet-printed capacitive tactile sensors", Sensors, Vol. 17, No. 11, pp. 25934-2612, 2017.
10 S. H. Jeong, H. J. Lee, K.-R. Kim, and K.-S. Kim, "Design of a miniature force sensor based on photointerrupter for robotic hand", Sens. Actuators A, Vol. 269, No. 1, pp.444-453, 2018.   DOI
11 U. Kim, D.-H. Lee, W. Yoon, B. Hannaford, and H. R. Choi, "Force sensor integrated surgical forceps for minimally invasive robotics surgery", IEEE Trans. Robot., Vol. 31, No. 5, pp. 1214-1224, 2015.   DOI