• Title/Summary/Keyword: Sensor stabilization

Search Result 139, Processing Time 0.037 seconds

Stabilization of the Sagnac optical fiber current sensor with automatic active-twist control

  • Lee, Jong-H.;Kang, Hyun-S.;Song, Jung-T.;Lee, Kyung-S.
    • Journal of the Optical Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.34-37
    • /
    • 1998
  • We present a novel method for the stabilization of the Sagnac current sensor with active twist control. The sensor output was improved more than 8 times by employing the proposed stabilization method. Stability within $\pm$1.7% was demonstrated between 36$^{\circ}C$ and 62$^{\circ}C$.

Analysis of Line of Sight Stabilization Performance based on Direct vs. Indirect of a 2-axis Gimbaled Servo System for Millimeter Wave Seeker (밀리미터파 탐색기 2축 직구동 김발 서보 시스템의 직접 및 간접 시선안정화 성능 분석)

  • Shin, Seungchul;Lee, Sung-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.11
    • /
    • pp.1555-1561
    • /
    • 2018
  • Tracking and detecting targets by the millimeter wave seeker is affected by movement of platform. Stabilization equipments use an inertial sensor to compensate for disturbance of stabilizing gimbal or platform. In the direct line of sight stabilization system, an inertial sensor is mounted on inner gimbal to compensate the disturbance directly, so the performance is excellent and the implementation method is simple. However gimbal design requires somewhat larger volume. Since an inertial sensor is mounted on gimbal base in the indirect line of sight stabilization system, additional space of gimbal is not required for the gimbal design. However, this method does not directly compensate for the disturbance of the line of sight stabilization axis, which can degrade performance. In order to perform the tracking performance, two methods are analyzed for line of sight stabilization performance based on direct and indirect of a 2-axis gimbaled servo system for millimeter wave seeker in this study. The simulation and experimental results validate the performance comparison of two methods.

Effect of IMU Sensor Based Trunk Stabilization Training on Muscle Activity and Thickness with Non-specific Chronic Low Back Pain (만성 허리통증 환자의 관성 센서 기반 허리 안정화 훈련이 몸통 근육 활성도와 두께에 미치는 영향)

  • Kim, Sang Hee;Lee, Hyun Ju;Tae, Ki Sik
    • Journal of Biomedical Engineering Research
    • /
    • v.43 no.3
    • /
    • pp.177-184
    • /
    • 2022
  • The purpose of this study was to present the IMU sensor based trunk stabilization exercise and to evaluate the changes in the muscle activity and thickness with non-specific low back pain patients (N=30). They were classified into two groups; lumbar stabilization exercise using IMU sensor (ILS), (n1=20) and general lumbar stabilization exercise (GLS), (n2=10). By comparing the difference between pre and post intervention via trunk muscle activity and muscle thickness, the significant differences were identified. Muscle activity was measured on external oblique (EO), internal oblique (IO), and multifidus (MF) by using surface electromyography (sEMG). Muslce thickness was measured on external oblique, internal oblique, transverse abdominis (TrA), and multifidus (MF) by using ultrasonography. sEMG activity was recorded at right side-bridge position. Each group performed the proposed lumbar stabilization exercise for 30 minutes a day, 5 times a week for 4 weeks. Trunk muscle activity was observed with a significant increase in the IO of ILS (p<.05) and a decrease in the MF of GLS (p<.05). Trunk muscle thickness was significantly increased in left EO and both IO of GLS (p<.05), and also significant increased right EO, both IO, both TrA, and both MF of the ILS (p<.05). In the future, a convergence approach of rehabilitation and engineering is needed to select a sensor suitable for rehabilitation purposes, study the validity and reliability of data, and produce appropriate rehabilitation contents.

Digital Image Stabilization Technique of Robot using Motion Sensor (모션센서를 이용한 로봇의 디지털 영상 보정 기술)

  • Oh, Jung-Suk;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.19 no.3
    • /
    • pp.317-322
    • /
    • 2009
  • If vibration occurs due to fast movement of the robot, the camera image is unstable. No longer the eyes of a robot can not perform the role. Research methods for the stabilization of shaky video is required. The most popular method is to use the motion vector. But, the drawback to this method will require a large amount of operation. And the limits of the embedded robot. Therefore, in real-time transmission of images to be difficult. This paper proposes a motion sensor using the image stabilization. Uses data that is output from the motion sensor. So, not related to the progress of the robot movement is a way to remove it from the video.

Implementation of A Sensor System for the Stabilization Control of Ship Antenna (선박용 안테나의 안정화 제어를 위한 센서 시스템의 구현)

  • Son, Young-Dae;Kim, Tae-Woo;Choi, Woo-Jin;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.650-653
    • /
    • 1998
  • In this paper, when we control Elevation Angle and Azimuth Angle of Antenna, intend to implement sensor system for stabilization control of antenna pedestral system because of wind in land, wave and external disturbances such as rolling, pitching, and yawing. Therefore, this sensor system is consist of Tilt Sensor for measuring absolute angle of roll ing and pitching, Level Rate Sensor, Cross Level Rate Sensor, Azimuth Rate Sensor for controlling short_term azimuth angle and Flux Gate Sensor for measuring long_term azimuth angle.

  • PDF

Effects of Stabilization Exercise with and without Respiratory Muscle Training on Respiratory Function and Postural Sway in Healthy Adults (호흡근훈련 유무에 따른 안정화 운동이 건강한 성인의 호흡 기능과 자세 동요에 미치는 영향)

  • Hye-Ri Seo;Duk-Hyun An;Mi-Hyun Kim;Min-Joo Ko;Jae-Seop Oh
    • Journal of The Korean Society of Integrative Medicine
    • /
    • v.11 no.3
    • /
    • pp.25-33
    • /
    • 2023
  • Purpose : Stabilization exercise and respiratory muscle training are used to train trunk muscles that affect postural control and respiratory function. However, there have been no studies that combine stabilization exercise and respiratory muscle training. The purpose of this study is to investigate effects of stabilization exercise with and without respiratory muscle training on respiratory function and postural sway. Methods : Fifteen healthy adults were recruited for this experiment. All the subjects performed stabilization exercise with and without respiratory muscle training. For stabilization exercise with respiratory muscle training, the subjects sat on a gym ball wearing a stretch sensor. The subjects inspire maximally as long as possible during lifting one foot off the ground, alternately for 30 seconds. The stretch sensor was placed on both anterior superior iliac spine (ASIS), and the stretch sensor was used to monitor inspiration. For stabilization exercise without respiratory muscle training, the subjects sat on a gym ball and lifted one foot off the ground, without respiratory muscle training. Kinovea program used to investigate postural sway tracking during exercise. The maximum inspiratory pressure (MIP) and maximum expiratory pressure (MEP) were measured using a spirometer to investigate changes of respiratory muscle strength before and after exercise. A paired t-test was used to determine significant differences postural sway tracking, MIP, and MEP between stabilization exercise with and without respiratory muscle training. Results : There were significantly lower a distance of postural sway tracking during stabilization exercise with respiratory muscle training, compared with stabilization exercise without respiratory muscle training (p<.05). The MIP and MEP were significantly increased after stabilization exercise with respiratory muscle training compared with before stabilization exercise with respiratory muscle trianing (p<.05). Conclusion : The results of this study suggest that stabilization exercise with repiratory muscle training would be recommended to improve postural control and respiratory muscle strength.

A Triple Nested PID Controller based on Sensor Fusion for Quadrotor Attitude Stabilization (쿼드로터 자세 안정화를 위한 센서융합 기반 3중 중첩 PID 제어기)

  • Cho, Youngwan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.67 no.7
    • /
    • pp.871-877
    • /
    • 2018
  • In this paper, we propose a triple nested PID control scheme for stable hovering of a quadrotor and propose a complementary filter based sensor fusion technique to improve the performance of attitude, altitude and velocity measurement. The triple nested controller has a structure in which a double nested attitude controller that has the angular velocity PD controller in inner loop and the angular PI controller in outer loop, is nested in a velocity control loop to enable stable hovering even in the case of disturbance. We also propose a sensor fusion technique by applying a complementary filter in order to reduce the noise and drift error included in the acceleration and gyro sensor and to measure the velocity by fusing image, gyro, and acceleration sensor. In order to verity the performance, we applied the proposed control and measurement scheme to hovering control of quadrotor.

Gunner primary sight stabilization system design and performance analysis (조준경 안정화 시스템의 설계 및 특성분석)

  • 김용관;백운보;김종화;이만형
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1990.10a
    • /
    • pp.327-332
    • /
    • 1990
  • Gunner primary sight stabilization system is a fully integrated sensor package designed to provide the stabilized Line-of-Sight. In this study, to improve disturbance rejection capabilities, two types of compensator (LQG/LTR, Lead-Lag) were designed and then stabilization performances were compared under severe off-road environment. Simulation results shows that the stabilization performances using LQG/LTR methodology is better than Lead-Lag methodology in spite of dynamic uncertainties.

  • PDF

An Implementation of Stabilizing Controller for 2-Axis Platform using Adaptive Fuzzy Control and DSP

  • Ryu, Gi-Seok;Kim, Jin-Kyu;Park, Jang-Ho;Kim, Dae-Young;Kim, Jong-Hwa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.71.3-71
    • /
    • 2001
  • Passive Stabilization method and active stabilization method are mainly used to comprise a control system of platform stabilizer. Passive Stabilization method has demerits because of size and weight except that control structure is simple while active stabilization method using sensors can reduce size and weight, it requires high sensor technique and control algorithm. In this paper, a stabilizing controller using adaptive fuzzy control technique and floating-point processor(DSP) is suggested.

  • PDF