• Title/Summary/Keyword: Sensor space

Search Result 1,316, Processing Time 0.027 seconds

Estimation of the Process Variable for Nuclear Power Plants Using the Parity Space Method and the Neural Network (패리티공간기법과 신경회로망을 이용한 원전 공정변수 추정)

  • 오성헌;김대일;김건중
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.7
    • /
    • pp.1169-1177
    • /
    • 1994
  • The function estimation characteristics of neural networks can be used sensor signal estimation of the nuclear power plants. In case of applying the neural network to the signal estimation of redundant sensors, it is an important problem that the redundant sensor signals used as the input signals of neural network should be validated. In this paper, we simplify the conventional parity space method in order to input the validated signal to the neural network and lso propose the sensor signal validation method, which estimates the reliable sensor output combining the neural network with the simplified parity space method. The acceptability of the proposed process variable estimation method is demonstrated by using the simulation data in safety injection accident of the nuclear power plant.

Fuzzy Neural Network Based Sensor Fusion and It's Application to Mobile Robot in Intelligent Robotic Space

  • Jin, Tae-Seok;Lee, Min-Jung;Hashimoto, Hideki
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.293-298
    • /
    • 2006
  • In this paper, a sensor fusion based robot navigation method for the autonomous control of a miniature human interaction robot is presented. The method of navigation blends the optimality of the Fuzzy Neural Network(FNN) based control algorithm with the capabilities in expressing knowledge and learning of the networked Intelligent Robotic Space(IRS). States of robot and IR space, for examples, the distance between the mobile robot and obstacles and the velocity of mobile robot, are used as the inputs of fuzzy logic controller. The navigation strategy is based on the combination of fuzzy rules tuned for both goal-approach and obstacle-avoidance. To identify the environments, a sensor fusion technique is introduced, where the sensory data of ultrasonic sensors and a vision sensor are fused into the identification process. Preliminary experiment and results are shown to demonstrate the merit of the introduced navigation control algorithm.

A new approach to deal with sensor errors in structural controls with MR damper

  • Wang, Han;Li, Luyu;Song, Gangbing;Dabney, James B.;Harman, Thomas L.
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.329-345
    • /
    • 2015
  • As commonly known, sensor errors and faulty signals may potentially lead structures in vibration to catastrophic failures. This paper presents a new approach to deal with sensor errors/faults in vibration control of structures by using the Fault detection and isolation (FDI) technique. To demonstrate the effectiveness of the approach, a space truss structure with semi-active devices such as Magneto-Rheological (MR) damper is used as an example. To address the problem, a Linear Matrix Inequality (LMI) based fixed-order $H_{\infty}$ FDI filter is introduced and designed. Modeling errors are treated as uncertainties in the FDI filter design to verify the robustness of the proposed FDI filter. Furthermore, an innovative Fuzzy Fault Tolerant Controller (FFTC) has been developed for this space truss structure model to preserve the pre-specified performance in the presence of sensor errors or faults. Simulation results have demonstrated that the proposed FDI filter is capable of detecting and isolating sensor errors/faults and actuator faults e.g., accelerometers and MR dampers, and the proposed FFTC can maintain the structural vibration suppression in faulty conditions.

Design of Current and Speed Controller for DC Motor Drive System Using dSPACE System (dSPACE 시스템을 이용한 직류 전동기 구동 시스템의 전류 및 속도 제어기 설계)

  • Ji Jun-Keun;Lee Yong-Seok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.3
    • /
    • pp.338-343
    • /
    • 2006
  • In this paper, design of current and speed controller for DC motor drive system using dSPACE 1104 system is introduced. Current and speed controller is designed and implemented using MATLAB/SIMULINK program simply and easily, and speed control response of DC motor can be advanced. Current and speed control of DC motor is carried in DSP control board using dSPACE system. Speed feedback is processed through QEP using pulse encorder as speed sensor, and current feedback is processed through A/D converter using hall sensor as current sensor. Controller is designed to PI current controler and PI speed controller. Current and speed response is verified through simulations and experiments.

  • PDF

Development of a Fine Digital Sun Sensor for STSAT-2

  • Rhee, Sung-Ho;Lyou, Joon
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.2
    • /
    • pp.260-265
    • /
    • 2012
  • Satellite devices for fine attitude control of the Science & Technology Satellite-2 (STSAT-2). Based on the mission requirements of STSAT-2, the conventional analog-type sun sensors were found to be inadequate, motivating the development of a compact, fast and fine digital sun sensor (FDSS). The FDSS uses a CMOS image sensor and has an accuracy of less than 0.03degrees, an update rate of 5Hz and a weight of less than 800g. A pinhole-type aperture is substituted for the optical lens to minimize its weight. The target process speed is obtained by utilizing the Field Programmable Gate Array (FPGA), which acquires images from the CMOS sensor, and stores and processes the image data. The sensor accuracy is maintained by a rigorous centroid algorithm. This paper describes the FDSS designs, realizations, tests and calibration results.

Landmark Detection Based on Sensor Fusion for Mobile Robot Navigation in a Varying Environment

  • Jin, Tae-Seok;Kim, Hyun-Sik;Kim, Jong-Wook
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.10 no.4
    • /
    • pp.281-286
    • /
    • 2010
  • We propose a space and time based sensor fusion method and a robust landmark detecting algorithm based on sensor fusion for mobile robot navigation. To fully utilize the information from the sensors, first, this paper proposes a new sensor-fusion technique where the data sets for the previous moments are properly transformed and fused into the current data sets to enable an accurate measurement. Exploration of an unknown environment is an important task for the new generation of mobile robots. The mobile robots may navigate by means of a number of monitoring systems such as the sonar-sensing system or the visual-sensing system. The newly proposed, STSF (Space and Time Sensor Fusion) scheme is applied to landmark recognition for mobile robot navigation in an unstructured environment as well as structured environment, and the experimental results demonstrate the performances of the landmark recognition.

PROTOTYPE DEVELOPMENT OF THE STAR SENSOR FOR THE KITSAT-3 (우리별 3호 STAR SENSOR 시험모델 개발)

  • 이현우;김병진;유상근;한원용
    • Journal of Astronomy and Space Sciences
    • /
    • v.12 no.2
    • /
    • pp.256-264
    • /
    • 1995
  • This report presents the development procedure and the results of a prototype star sensor which can be used as one of the attitude sensors of the KITSAT-3. The star sensor is a major attitude sensor that can determine the 3-axis attitude information, by comparing between star corrdinates in the star catalog and the measured corrdinates. The 2 dimensional CCD camera is used for measuring the star corrdinates and the DSP(Digital Signal Processor) technology is applied to the image and signal processing. Using the prototype star sensor with thermoelectri cooling technique, we have succesfully obtained the star images around 4th magnitude at Sobaeksan Astronomy Observatory minimizing night sky effect.

  • PDF

A Neuro-Fuzzy Inference System for Sensor Failure Detection Using Wavelet Denoising, PCA and SPRT

  • Na, Man-Gyun
    • Nuclear Engineering and Technology
    • /
    • v.33 no.5
    • /
    • pp.483-497
    • /
    • 2001
  • In this work, a neuro-fuzzy inference system combined with the wavelet denoising, PCA (principal component analysis) and SPRT (sequential probability ratio test) methods is developed to detect the relevant sensor failure using other sensor signals. The wavelet denoising technique is applied to remove noise components in input signals into the neuro-fuzzy system The PCA is used to reduce the dimension of an input space without losing a significant amount of information. The PCA makes easy the selection of the input signals into the neuro-fuzzy system. Also, a lower dimensional input space usually reduces the time necessary to train a neuro-fuzzy system. The parameters of the neuro-fuzzy inference system which estimates the relevant sensor signal are optimized by a genetic algorithm and a least-squares algorithm. The residuals between the estimated signals and the measured signals are used to detect whether the sensors are failed or not. The SPRT is used in this failure detection algorithm. The proposed sensor-monitoring algorithm was verified through applications to the pressurizer water level and the hot-leg flowrate sensors in pressurized water reactors.

  • PDF

A Study on the Selectivity of Gas Sensors by Sensing Pattern Recognition (감지 패턴 인식에 의한 가스센서의 선택성 연구)

  • Lee, Sung-Pil
    • Journal of Sensor Science and Technology
    • /
    • v.20 no.6
    • /
    • pp.428-433
    • /
    • 2011
  • We report on the building of a micro sensor array based on typical semiconductor fabrication processes aimed at monitoring selectively a specific gas in ambient of other gases. Chemical sensors can be applied for an electronic nose and/or robots using this technique. Microsensor array was fabricated on the same chip using 0.6${\mu}m$ CMOS technology, and unique gas sensing patterns were obtained by principal component analysis from the array. $SnO_2$/Pt sensor for CO gas showed a high selectivity to buthane gas and humidity. $SnO_2$ sensor for hydrogen gas, however, showed a low selectivity to CO and buthane gas. We can obtain more distinguishable patterns that provide the small sensing deviation(the high seletivity) toward a given analyte in the response space than in the chemical space through the specific parameterization of raw data for chemical image formation.

The Development of Optical Temperature Sensor Based on the Etched Bragg Gratings

  • Ahn, Kook-Chan;Lee, Sang-Mae
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.2 no.2
    • /
    • pp.56-64
    • /
    • 2001
  • An optical temperature sensor based on the etched planar waveguide Bragg grating is developed and its performance is explored using theoretical and experimental methods. The planar waveguide is designed and fabricated using optical lithography and wet chemical etching. An efficient butt coupled optical fiber is used to examine the spectral characteristics of the grating sensor, and to investigate the grating parameters. The typical bandwidth and reflectivity of the surface etched grating has been ~0.2 nm and ~7%, respectively, at a wavelength of ~1,552 nm. The temperature-induced wavelength change of the optical sensor is found to be slightly non-linear over ${\sim}200^{\circ}C$ temperature range. Theoretical models for the grating response of the sensor based on waveguide and classical laminated plate deformation theories agree with experiments to within acceptable tolerance.

  • PDF