• Title/Summary/Keyword: Sensor platform

Search Result 771, Processing Time 0.025 seconds

Design and Implementation of Low Power Consumption Wireless Sensor Network Platform for Intelligent Motorway Monitoring (USN 기반 지능형 도로상태 모니터링을 위한 저전력 센서네트워크 플랫폼 구현)

  • Song, Min-Hwan;Kim, Jae-Ho;Ahn, Il-Yeop;Kim, Tae-Hyun;Park, Young-Kuk;Won, Kwang-Ho;Lee, Sang-Shin
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.463-465
    • /
    • 2008
  • This article describes a design and implementation of low power consumption wireless sensor network platform for intelligent motorway monitoring. There are many dangerous situations on motorway, foggy weathers, rapidly changes of temperature, etc. We designed a system for monitoring motorway environment for report dangerous situation. We introduce this system and its lowpower consumption characteristics which important to battery based system.

  • PDF

Development of an IoT Platform for Ocean Observation Buoys

  • Kim, Si Moon;Lee, Un Hyun;Kwon, Hyuk Jin;Kim, Joon-Young;Kim, Jeongchang
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.6 no.2
    • /
    • pp.109-116
    • /
    • 2017
  • In this paper, we propose an Internet of Things (IoT) platform for ocean observation buoys. The proposed system consists of various sensor modules, a gateway, and a remote monitoring site. In order to integrate sensor modules with various communications interfaces, we propose a controller area network (CAN)-based sensor data packet and a protocol for the gateway. The proposed scheme supports the registration and management of sensor modules so as to make it easier for the buoy system to manage various sensor modules. Also, in order to extend communication coverage between ocean observation buoys and the monitoring site, we implement a multi-hop relay network based on a mesh network that can provide greater communication coverage than conventional buoy systems. In addition, we verify the operation of the implemented multi-hop relay network by measuring the received signal strength indication between buoy nodes and by observing the collected data from the deployed buoy systems via our monitoring site.

Design and Implementation of Sensor Information Management System based on Celery-MongoDB (Celery-MongoDB 를 활용한 센서정보 관리시스템 설계 및 구현)

  • Kang, Yun-Hee
    • Journal of Platform Technology
    • /
    • v.9 no.2
    • /
    • pp.3-9
    • /
    • 2021
  • The management of sensor information requires the functions for registering, modifying and deleting rapidly sensor information about various many sensors. In this research, Celery and MongoDB are used for developing a sensory data management system. Celery supplies a queue structure based on asynchronous communication in Python. Celery is a distributed simple job-queue but reliable distributed system suitable for processing large message. MongoDB is a NoSQL database that is capable of managing various informal information. In this experiment, we have checked that variety of sensor information can be processed with this system in a IoT environment. To improve the performance for handling a message with sensory data, this system will be deployed in the edge of a cloud infrastructure.

Development of Railway Platform Safety Equipment using Laser Radar Sensor (레이저 레이더 센서를 이용한 철도 승강장 안전설비의 개발)

  • Kim, Yoo-Ho;Hwang, Jong-Gyu;Jo, Hyun-Jeong;Baek, Jong-Hyun;Kim, Baek-Hyun;Ko, Tae-Kuk
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.62 no.2
    • /
    • pp.57-64
    • /
    • 2013
  • Many accidents are being occurred due to many missteps, etc. at the railway platform. Recently in Korea, efforts to prevent casualties fundamentally are being made by installing and operating the PSD(Platform Screen Door) with underground station building as its center to prevent these casualties of passengers. Although this PSD can solve the problem of public casualties at platform fundamentally, it is impossible to install it at whole station buildings since its installation cost is high, and in case of the ground station building of general railway whose operation speed is higher, installation of PSD is impossible due to the characteristics of railway system. This paper proposes the novel safety equipment using Laser radar sensors for the prevention against casualties of passengers at station buildings where the PSDs are not installed like this. The safety equipment using Laser radar sensors is the safety equipment making an approaching train stopped if the falling object is a person by detecting the obstacle at platform through, and it has the merit possible to apply it to station buildings not only in the underground section but also in the ground section since it may detect accurately under ambient environmental elements such as the snow, rain and yellow dust, etc. also. We developed the prototype of the safety equipment to reduce public casualties at platform by using Laser radar sensors and carried out its performance test, and the result is presented in this paper.

Modular platform techniques for multi-sensor/communication of wearable devices (웨어러블 디바이스를 위한 다중 센서/통신용 모듈형 플랫폼 기술)

  • Park, Sung Hoon;Kim, Ju Eon;Yoon, Dong-Hyun;Baek, Kwang-Hyun
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.185-194
    • /
    • 2017
  • In this paper, a modular platform for wearable devices is proposed which can be easily assembled by exchanging functions according to various field and environment conditions. The proposed modular platform consists of a 32-bit RISC CPU, a 32-bit symmetric multi-core processor, and a 16-bit DSP. It also includes a plug & play features which can quickly respond to various environments. The sensing and communication modules are connected in the form of a chain. This work is implemented in a standard 130 nm CMOS technology and the proposed modular wearable platforms are verified with temperature and humidity sensors.

A Study on the Development of Multi-User Virtual Reality Moving Platform Based on Hybrid Sensing (하이브리드 센싱 기반 다중참여형 가상현실 이동 플랫폼 개발에 관한 연구)

  • Jang, Yong Hun;Chang, Min Hyuk;Jung, Ha Hyoung
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.3
    • /
    • pp.355-372
    • /
    • 2021
  • Recently, high-performance HMDs (Head-Mounted Display) are becoming wireless due to the growth of virtual reality technology. Accordingly, environmental constraints on the hardware usage are reduced, enabling multiple users to experience virtual reality within a single space simultaneously. Existing multi-user virtual reality platforms use the user's location tracking and motion sensing technology based on vision sensors and active markers. However, there is a decrease in immersion due to the problem of overlapping markers or frequent matching errors due to the reflected light. Goal of this study is to develop a multi-user virtual reality moving platform in a single space that can resolve sensing errors and user immersion decrease. In order to achieve this goal hybrid sensing technology was developed, which is the convergence of vision sensor technology for position tracking, IMU (Inertial Measurement Unit) sensor motion capture technology and gesture recognition technology based on smart gloves. In addition, integrated safety operation system was developed which does not decrease the immersion but ensures the safety of the users and supports multimodal feedback. A 6 m×6 m×2.4 m test bed was configured to verify the effectiveness of the multi-user virtual reality moving platform for four users.

A Study on Inertia Sensor System for Nano Electronic Device (나노전자소자로서의 관성센서 시스템에 관한 연구)

  • Lee, Jun-Ha
    • Journal of the Semiconductor & Display Technology
    • /
    • v.8 no.4
    • /
    • pp.21-24
    • /
    • 2009
  • We investigated a nanoscale inertia sensor based on telescoping carbon nanotubes, using classical molecular dynamics simulations. The position of the telescoping nanotubes is controlled by the centrifugal force exerted by the rotation platform, thus, position shifts are determined by the capacitance between carbon nanotubes and the electrode, and the operating frequency of the carbon nanotube oscillator. This measurement system, tracking oscillations of the carbon nanotube oscillator, can be used as the sensor for numerous types of devices, such as motion detectors, accelerometers and acoustic sensors.

  • PDF

Development of a 6-axis Robotic Base Platform with Force/Moment Sensing (힘/모멘트 측정기능을 갖는 6축 로봇 베이스 플랫폼 개발)

  • Jung, Sung Hun;Kim, Han Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.22 no.3
    • /
    • pp.315-324
    • /
    • 2019
  • This paper present a novel 6-axis robotic base platform with force/moment sensing. The robotic base platform is made up of six loadcells connecting the moving plate to the fixed plate by spherical joints at the both ends of loadcells. The statics relation is derived, the robotic base platform prototype and the loadcell measurement system are developed. The force/moment calibrations in joint and Cartesian spaces are performed. The algorithm to detect external force applied at a working robot is derived, and using a 6-DOF robot mounted on the robotic base platform, force/moment measurement experiments have been performed.

Performance Evaluation of Wireless Sensor Networks in the Subway Station of Workroom (지하철 역사내 무선 센서네트워크 환경구축을 위한 무선 스펙트럼 분석 및 전송시험에 관한 연구)

  • An, Tea-Ki;Kim, Gab-Young;Yang, Se-Hyun;Choi, Gab-Bong;Sim, Bo-Seog
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.7
    • /
    • pp.3220-3226
    • /
    • 2011
  • In order to monitor internal risk factors such as fire, terror, etc. on the subway station, the surveillance systems using CCTV and various kinds of sensors have been implemented and recently, introduction of surveillance systems using an advanced IT technology, sensor network technology is tried on several areas. Since 2007, Korean government has made an effort to develop the intelligent surveillance and monitoring system, which can monitor fire, intrusion, passenger congestion, health-state of structure, etc., by using wireless sensor network technology and intelligent video analytic technique. For that purpose, this study carried out field wireless communication environment test on Chungmuro Station of Seoul Metro on the basis of ZigBee that is considered as a representative wireless sensor network before field application of the intelligent integrated surveillance system being developed, arranged and analyzed and ZigBee based wireless communication environment test results on the platform and waiting room of Chungmuro Station on this paper. Results of wireless spectrum analysis on the platform and waiting room showed that there is no radio frequency overlapped with that of ZigBee based sensor network and no frequency interference with adjacent frequencies separated 10MHz or more. As results of wireless data transmission test using ZigBee showed that data transmission is influenced by multi-path fading effect from the number and flow rate of passengers on the platform or the waiting room rather than effects from entrance and exit of the train to/from the platform, it should be considered when implementing the intelligent integrated surveillance system on the station.

Light-Weight Mobile VR Platform using HMD with 6 Axis (6 축센서를 갖는 HMD 경량 모바일 VR Platform)

  • Kang, Yunhee;Kang, JungJu
    • Journal of Platform Technology
    • /
    • v.6 no.2
    • /
    • pp.3-9
    • /
    • 2018
  • Recently VR environment is used in many areas including mobile learning, smart factory. However HMD(head-mounted display) is required to a dedicated and expensive system with high-end specification. When designing a VR system, it is needed to handle performance, mobility and usability. Many VR applications need to handle diverse sensors and user inputs continuously in a streaming manner. In this paper we design a VR mobile platform and implement a low-cost mobile VR HMD running on the platform. The VR HMD supports 3D contents delivery in a mobile manner. It is used to detect the motion detection based on angle value of a VR player from accelerator and gyro sensor. The MPU-6050, 6-axis sensor, is used to get a sensory value and the sensory value is taken as an input to a VR rendering server on a Unity game engine that is generated 3D images.