• Title/Summary/Keyword: Sensor element

Search Result 846, Processing Time 0.027 seconds

Detecting and predicting the crude oil type inside composite pipes using ECS and ANN

  • Altabey, Wael A.
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.4
    • /
    • pp.377-393
    • /
    • 2016
  • The present work develops an expert system for detecting and predicting the crude oil types and properties at normal temperature ${\theta}=25^{\circ}C$, by evaluating the dielectric properties of the fluid transfused inside glass fiber reinforced epoxy (GFRE) composite pipelines, by using electrical capacitance sensor (ECS) technique, then used the data measurements from ECS to predict the types of the other crude oil transfused inside the pipeline, by designing an efficient artificial neural network (ANN) architecture. The variation in the dielectric signatures are employed to design an electrical capacitance sensor (ECS) with high sensitivity to detect such problem. ECS consists of 12 electrodes mounted on the outer surface of the pipe. A finite element (FE) simulation model is developed to measure the capacitance values and node potential distribution of ECS electrodes by ANSYS and MATLAB, which are combined to simulate sensor characteristic. Radial Basis neural network (RBNN), structure is applied, trained and tested to predict the finite element (FE) results of crude oil types transfused inside (GFRE) pipe under room temperature using MATLAB neural network toolbox. The FE results are in excellent agreement with an RBNN results, thus validating the accuracy and reliability of the proposed technique.

Analysis of Magnetic Concentrator of Magnetic Sensor by Using Finite Element Method (유한요소법을 이용한 자기센서용 자속집속기의 해석)

  • Shin, Kwang-Ho
    • Journal of the Korean Magnetics Society
    • /
    • v.23 no.3
    • /
    • pp.89-93
    • /
    • 2013
  • In this study, magnetic concentrators which could be used to enhance sensitivity of Hall effect sensor were analyzed by using FEM. The parameters for FEM analysis were the thickness and edge shape of magnetic concentrator and relative position of magnetic concentrator against Hall element. Magnetic field in z direction decreased with increasing of the thickness of magnetic concentrator, of which tendency was similar to apparent relative permeability calculated with demagnetizing factor of magnetic concentrator. There were optimal thickness and edge shape of magnetic concentrator according to the relative position of magnetic concentrator against Hall element.

Development of Tactile Force Sensor using Fiber Bragg Grating (광섬유 브래그 격자를 이용한 촉각 힘 센서의 개발)

  • Kim, Man-Sub;Lee, Jung-Ju
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.811-816
    • /
    • 2004
  • The tactile force sensor was studied using Fiber Bragg Grating (FBG). The FBG is able to multiplex easily and is immune to electromagnetic environment. A sensor frame was designed to a cantilever beam type. Strain of a beam is related with the peak shift of a bragg wavelength. Finite Element Method (FEM) was used for getting an appropriate thickness from 0.2 mm to 0.3 mm thick. FEM results showed that 0.3 mm thick was suitable for the force range 10 N. The force resolutions of 0.039 N and 0.113 N were obtained with optical spectrum analyser and tunable Fabry-Perot filter, respectively.

  • PDF

Design of Rotary Magnetic Position Sensor with Sinusoidally Magnetized Permanent Magnet (정현적으로 착자된 영구자석을 갖는 마그네틱 위치센서 설계)

  • Jeong, Seung-Ho;Rhyu, Se-Hyun;Kwon, Byung-Il
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.506-513
    • /
    • 2007
  • This paper proposes a rotary magnetic position sensor which has a sinusoidally magnetized permanent magnet with a small number of poles. To make the sinusoidal magnetic flux density distribution from the permanent magnet, a magnetizing future is optimized by the DOE(Design of Experiments) method. The magnetization process is analyzed using the Preisach model and 2 dimensional finite element method. The magnetic flux density distribution from the magnetized permanent magnet is very similar to ideal sine wave. The simulation result of the magnetic flux density distribution is compared with the experimental one. Also the availability of the proposed rotary type magnetic position sensor is confirmed by position calculation technique.

Polymer Based Slim Tactile Sensor: Optimal Design and New Fabrication Method (폴리머 기반 슬림형 촉각센서의 최적 설계 및 새로운 공정 방법)

  • Lee, Jeong-Il;Sato, Kazuo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.131-134
    • /
    • 2011
  • In this study, we propose an optimal design and new fabrication method for a slim tactile sensor. Slim tactile sensor can detect 3-axial forces and has suitable flexibility for intelligent robot fingers. To amplify the contact signal, a unique table-shaped structure was attempted. A new layer-by-layer fabrication process for polymer micromachining that can make a 3D structure by using a sacrificial layer was proposed. A table-shaped epoxy sensing plate with four legs was built on top of a flexible polymer substrate. The plate can convert an applied force to a concentrated stress. Normal and shear forces can be detected by combining responses from metal strain gauges embedded in the polymer substrate. The optimal positions of the strain gauges are determined using the strain distribution obtained from finite element analysis.

Analysis of Temperature Distribution using Finite Element Method for SCS Insulator Wafers (유한요소법을 이용한 SCS 절연 웨이퍼의 온도분포 해석)

  • Kim, O.S.
    • Journal of Power System Engineering
    • /
    • v.5 no.4
    • /
    • pp.11-17
    • /
    • 2001
  • Micronization of sensor is a trend of the silicon sensor development with regard to a piezoresistive silicon pressure sensor, the size of the pressure sensor diaphragm have become smaller year by year, and a microaccelerometer with a size less than $200{\sim}300{\mu}m$ has been realized, In this paper, we study some of the bonding processes of SCS(single crystal silicon) insulator wafer for the microaccelerometer. and their subsequent processes which might affect thermal loads. The finite element method(FEM) has been a standard numerical modeling technique extensively utilized in micro structural engineering discipline for design of SCS insulator wafers. Successful temperature distribution analysis and design of the SCS insulator wafers based on the tunneling current concept using microaccelerometer depend on the knowledge about normal mechanical properties of the SCS and $SiO_2$ layer and their control through manufacturing processes.

  • PDF

A study on the Fabrication and characterization of temperature Sensor using surface acoustic wave (표면 탄성파를 이용한 온도센서의 제작 및 특성에 대한 연구)

  • Park Jae-Hong;Kim Jae-Hwan
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.4 s.181
    • /
    • pp.139-145
    • /
    • 2006
  • This paper presents the design and manufacturing of a sensor using SAW and delay line in order to measure temperature. SAW sensors having single and double electrodes are manufactured on the $128^{\circ}YX-LiNbO_3$ substrate, and its process is addressed. Before manufacturing, the device is simulated using a commercial finite element program. The frequency responses of the saw sensor on the temperature change is measured. Since the center frequency on the temperature change from $-30^{\circ}C$ to $80^{\circ}C$ is linearly changed, the saw sensor is applicable to measure the temperature change or strain variation.

Stress Analysis of a Tension Sensor with a Rubber Housing for a Fence Intrusion Detection System (고무하우징을 갖는 장력센서의 변형거동 해석)

  • Lee, Hyoung-Wook;Jang, Kwang-Keol;Huh, Hoon;Kang, Dae-Im
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.698-703
    • /
    • 2001
  • This paper is concerned with the nonlinear hyperelastic problem fur the incompressible characteristics of the rubber. Tension sensor is a strain gage type load cell element for a fence intrusion detection system and consists of the sensing part and the rubber housing. The analysis includes an elastic analysis and a hyperelastic analysis of a tension sensor for the deformed shape and variation of the maximum strain on the sensing part with respect to the vertical load. Numerical results show that the hyperelastic model is stiffer and less deformed than the elastic model. Comparing with the experimental test data, we know the hyperelastic model is the better approximation than the elastic model.

  • PDF

Finite Element Analysis of Capctive Silicon Pressure Sensors (용량형 실리콘 압력 센서의 유한요소 해석)

  • Roh, Yong-Ae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.14 no.2E
    • /
    • pp.12-18
    • /
    • 1995
  • Capactive miro pressure sensor is simulated with finite element methods to analyze the effect of geometrical variation on its performace. Sensor material is th silicon single crystal. The sensor consists of a disk type diaphragm and several bridges connected to a rigid frame. Structural variables in consideration are the thickness of the diaphragm and the bridges, radius of the circular plate, and the number of bridges. Results of static, dynamic and sensitivity analyses reveal the best structure of the sensor among the fifteen cases under investigation.

  • PDF

Advancement in fabrication of sensors using nanotechnology: A bibliographic review and future research scope

  • Ujwala A. Kshirsagar;Devank C. Joshi
    • Advances in nano research
    • /
    • v.14 no.5
    • /
    • pp.399-407
    • /
    • 2023
  • As Sensor plays an important part in day-to-day life. Sensors are used almost in each domain wherein humans are not able to sense or measure some parameters. Say from sensing a real-time activity of a person to sensing the tiny molecules of any gas or structures. Now sensors combined with advanced fabrication techniques with nanotechnology can be said as a game-changing combination. As the modern world is evolving every minute, the size of the components, instruments, and different equipment is shrinking rapidly. For example, the sensor or any other element which was used 10 years ago is reduced up to 5 times its original size and all of this is possible because of continuous advancement done in the manufacturing and fabrication techniques that are being used nowadays. Apart from this, it is not necessary that the term nano should only justify the size of the sensor. Nanotechnologically fabricated, refers to a sensor or any other element which may be large enough as compared to the regular one but they may be structured using some nano-particles.